1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
// [x, flag, resNorm, iter, resVec] = pcg(A, b, tol, maxIter, M, M2, x)
//
// PCG solves the symmetric positive definite linear system Ax=b
// using the Preconditionned Conjugate Gradient.
//
// input A REAL symmetric positive definite matrix or function
// b REAL right hand side vector
// tol REAL error tolerance (default: 1e-8)
// maxIter INTEGER maximum number of iterations (default: 50)
// M REAL preconditioner matrix (default: none)
// M2 REAL preconditioner matrix (default: none)
// x REAL initial guess vector
//
// output x REAL solution vector
// flag INTEGER: 0 = solution found to tolerance
// 1 = no convergence given maxIter
// resNorm REAL final relative norm of the residual
// iter INTEGER number of iterations performed
// resVec REAL residual vector
// Details of this algorithm are described in
//
// "Templates for the Solution of Linear Systems: Building Blocks
// for Iterative Methods",
// Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout,
// Pozo, Romine, and Van der Vorst, SIAM Publications, 1993
// (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
//
// "Iterative Methods for Sparse Linear Systems, Second Edition"
// Saad, SIAM Publications, 2003
// (ftp ftp.cs.umn.edu; cd dept/users/saad/PS; get all_ps.zip).
// Sage Group (IRISA, 2004)
function [x, flag, resNorm, iter, resVec] = pcg(A, varargin)
// -----------------------
// Parsing input arguments
// -----------------------
[lhs,rhs] = argn(0);
if (rhs < 2),
error("pcg: not enough input arguments");
end
// Parsing the matrix A
select type(A)
case 1 then
matrixType = 1;
case 5 then
matrixType = 1;
case 13 then
matrixType = 0;
else
error("pcg: unknown type for A");
end
// If A is a matrix (dense or sparse)
if (matrixType == 1),
if (size(A,1) ~= size(A,2)),
error("pcg: matrix A must be square");
end
end
// Parsing right hand side b
b=varargin(1);
if (size(b,2) ~= 1),
error("pcg: right hand side b must be a column vector");
end
if (matrixType ==1),
if (size(b,1) ~= size(A,1)),
error("pcg: right hand side b must have the size of the matrix A");
end
end
// Parsing of the error tolerance tol
if (rhs >= 3),
tol=varargin(2);
if (size(tol) ~= [1 1]),
error("pcg: tol must be a scalar");
end
else
tol=1e-8;
end
// Parsing of the maximum number of iterations max_it
if (rhs >= 4),
maxIter = varargin(3);
if (size(maxIter) ~= [1 1]),
error("pcg: maxIter must be a scalar");
end
else
maxIter = min(size(b,1),50);
end
// Parsing the preconditioner M
if (rhs >=5),
M = varargin(4);
select type(M)
case 1 then
precondType = 1;
case 5 then
precondType = 1;
case 13 then
precondType = 2;
else
error("pcg: unknown type for preconditionner");
end
if (precondType == 1),
if (size(M,1) ~= size(M,2)),
error("pcg: preconditionner matrix M must be square");
end
if ( size(M,1) ~= size(b,1) ),
error("pcg: preconditionner matrix M must have the size of b");
end
end
else
precondType = 0; //no preconditionner
end
// Parsing the preconditioner M
if (rhs >=6),
M2 = varargin(5);
select type(M2)
case 1 then
precondBis = 1;
case 5 then
precondBis = 1;
case 13 then
precondBis = 2;
else
error("pcg: unknown type for preconditionner");
end
if (precondBis == 1),
if (size(M2,1) ~= size(M2,2)),
error("pcg: preconditionner matrix M2 must be square");
end
if ( size(M2,1) ~= size(b,1) ),
error("pcg: preconditionner matrix M2 must have the size of b");
end
end
else
precondBis = 0; //no preconditionner
end
// Parsing the initial vector x
if (rhs >= 7),
x=varargin(6);
if (size(x,2) ~= 1),
error("pcg: initial guess x0 must be a column vector");
end
if (size(x,1) ~= size(b,1)),
error("pcg: initial guess x0 must have the size of b");
end
else
x=zeros(b);
end
// input arguments are parsed !
if (rhs > 6),
error("pcg: too many input arguments");
end
// ------------
// Computations
// ------------
// initialization
flag = 0;
iter = 0;
bnrm2 = norm(b);
if (bnrm2 == 0),
x = zeros(b);
resNorm = 0;
resVec = resNorm;
end
// r = b - A*x;
if (matrixType ==1),
r = b - A*x;
else
r = b - A(x);
end
resNorm = norm(r) / bnrm2;
resVec = resNorm;
if (resNorm < tol),
return;
end
// begin iteration
for i = 1:maxIter-1,
// z = M \ r;
if (precondType == 1),
z = M \ r;
elseif (precondType == 2),
z = M(r);
else
z = r;
end
// z = M2 \ r;
if (precondBis == 1),
z = M2 \ r;
elseif (precondBis == 2),
z = M2(r);
else
z = r;
end
rho = (r'*z);
if (i > 1),
bet = rho / rho_1;
p = z + bet*p;
else
p = z;
end
// q = A*p;
if (matrixType ==1),
q = A*p;
else
q = A(p);
end
alp = rho / (p'*q );
x = x + alp*p;
r = r - alp*q;
resNorm = norm(r) / bnrm2;
resVec = [resVec;resNorm];
if (resNorm <= tol),
iter=i;
break;
end
rho_1 = rho;
if (i == maxIter ),
iter=i;
end
end
// test for convergence
if (resNorm > tol),
flag = 1;
if (lhs < 2),
warning('PCG did not converge');
end
end
endfunction
|