1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
SUBROUTINE ZHER2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
$ C, LDC )
* .. Scalar Arguments ..
CHARACTER TRANS, UPLO
INTEGER K, LDA, LDB, LDC, N
DOUBLE PRECISION BETA
COMPLEX*16 ALPHA
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* ZHER2K performs one of the hermitian rank 2k operations
*
* C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C,
*
* or
*
* C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C,
*
* where alpha and beta are scalars with beta real, C is an n by n
* hermitian matrix and A and B are n by k matrices in the first case
* and k by n matrices in the second case.
*
* Parameters
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the array C is to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of C
* is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of C
* is to be referenced.
*
* Unchanged on exit.
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) +
* conjg( alpha )*B*conjg( A' ) +
* beta*C.
*
* TRANS = 'C' or 'c' C := alpha*conjg( A' )*B +
* conjg( alpha )*conjg( B' )*A +
* beta*C.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix C. N must be
* at least zero.
* Unchanged on exit.
*
* K - INTEGER.
* On entry with TRANS = 'N' or 'n', K specifies the number
* of columns of the matrices A and B, and on entry with
* TRANS = 'C' or 'c', K specifies the number of rows of the
* matrices A and B. K must be at least zero.
* Unchanged on exit.
*
* ALPHA - COMPLEX*16 .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
* k when TRANS = 'N' or 'n', and is n otherwise.
* Before entry with TRANS = 'N' or 'n', the leading n by k
* part of the array A must contain the matrix A, otherwise
* the leading k by n part of the array A must contain the
* matrix A.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. When TRANS = 'N' or 'n'
* then LDA must be at least max( 1, n ), otherwise LDA must
* be at least max( 1, k ).
* Unchanged on exit.
*
* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is
* k when TRANS = 'N' or 'n', and is n otherwise.
* Before entry with TRANS = 'N' or 'n', the leading n by k
* part of the array B must contain the matrix B, otherwise
* the leading k by n part of the array B must contain the
* matrix B.
* Unchanged on exit.
*
* LDB - INTEGER.
* On entry, LDB specifies the first dimension of B as declared
* in the calling (sub) program. When TRANS = 'N' or 'n'
* then LDB must be at least max( 1, n ), otherwise LDB must
* be at least max( 1, k ).
* Unchanged on exit.
*
* BETA - DOUBLE PRECISION .
* On entry, BETA specifies the scalar beta.
* Unchanged on exit.
*
* C - COMPLEX*16 array of DIMENSION ( LDC, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array C must contain the upper
* triangular part of the hermitian matrix and the strictly
* lower triangular part of C is not referenced. On exit, the
* upper triangular part of the array C is overwritten by the
* upper triangular part of the updated matrix.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array C must contain the lower
* triangular part of the hermitian matrix and the strictly
* upper triangular part of C is not referenced. On exit, the
* lower triangular part of the array C is overwritten by the
* lower triangular part of the updated matrix.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero, and on exit they
* are set to zero.
*
* LDC - INTEGER.
* On entry, LDC specifies the first dimension of C as declared
* in the calling (sub) program. LDC must be at least
* max( 1, n ).
* Unchanged on exit.
*
*
* Level 3 Blas routine.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
* Ed Anderson, Cray Research Inc.
*
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCONJG, MAX
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, INFO, J, L, NROWA
COMPLEX*16 TEMP1, TEMP2
* ..
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
IF( LSAME( TRANS, 'N' ) ) THEN
NROWA = N
ELSE
NROWA = K
END IF
UPPER = LSAME( UPLO, 'U' )
*
INFO = 0
IF( ( .NOT.UPPER ) .AND. ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
INFO = 1
ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ) .AND.
$ ( .NOT.LSAME( TRANS, 'C' ) ) ) THEN
INFO = 2
ELSE IF( N.LT.0 ) THEN
INFO = 3
ELSE IF( K.LT.0 ) THEN
INFO = 4
ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
INFO = 7
ELSE IF( LDB.LT.MAX( 1, NROWA ) ) THEN
INFO = 9
ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
INFO = 12
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHER2K', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
$ ( BETA.EQ.ONE ) ) )RETURN
*
* And when alpha.eq.zero.
*
IF( ALPHA.EQ.ZERO ) THEN
IF( UPPER ) THEN
IF( BETA.EQ.DBLE( ZERO ) ) THEN
DO 20 J = 1, N
DO 10 I = 1, J
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = 1, J - 1
C( I, J ) = BETA*C( I, J )
30 CONTINUE
C( J, J ) = BETA*DBLE( C( J, J ) )
40 CONTINUE
END IF
ELSE
IF( BETA.EQ.DBLE( ZERO ) ) THEN
DO 60 J = 1, N
DO 50 I = J, N
C( I, J ) = ZERO
50 CONTINUE
60 CONTINUE
ELSE
DO 80 J = 1, N
C( J, J ) = BETA*DBLE( C( J, J ) )
DO 70 I = J + 1, N
C( I, J ) = BETA*C( I, J )
70 CONTINUE
80 CONTINUE
END IF
END IF
RETURN
END IF
*
* Start the operations.
*
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) +
* C.
*
IF( UPPER ) THEN
DO 130 J = 1, N
IF( BETA.EQ.DBLE( ZERO ) ) THEN
DO 90 I = 1, J
C( I, J ) = ZERO
90 CONTINUE
ELSE IF( BETA.NE.ONE ) THEN
DO 100 I = 1, J - 1
C( I, J ) = BETA*C( I, J )
100 CONTINUE
C( J, J ) = BETA*DBLE( C( J, J ) )
ELSE
C( J, J ) = DBLE( C( J, J ) )
END IF
DO 120 L = 1, K
IF( ( A( J, L ).NE.ZERO ) .OR. ( B( J, L ).NE.ZERO ) )
$ THEN
TEMP1 = ALPHA*DCONJG( B( J, L ) )
TEMP2 = DCONJG( ALPHA*A( J, L ) )
DO 110 I = 1, J - 1
C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
$ B( I, L )*TEMP2
110 CONTINUE
C( J, J ) = DBLE( C( J, J ) ) +
$ DBLE( A( J, L )*TEMP1+B( J, L )*TEMP2 )
END IF
120 CONTINUE
130 CONTINUE
ELSE
DO 180 J = 1, N
IF( BETA.EQ.DBLE( ZERO ) ) THEN
DO 140 I = J, N
C( I, J ) = ZERO
140 CONTINUE
ELSE IF( BETA.NE.ONE ) THEN
DO 150 I = J + 1, N
C( I, J ) = BETA*C( I, J )
150 CONTINUE
C( J, J ) = BETA*DBLE( C( J, J ) )
ELSE
C( J, J ) = DBLE( C( J, J ) )
END IF
DO 170 L = 1, K
IF( ( A( J, L ).NE.ZERO ) .OR. ( B( J, L ).NE.ZERO ) )
$ THEN
TEMP1 = ALPHA*DCONJG( B( J, L ) )
TEMP2 = DCONJG( ALPHA*A( J, L ) )
DO 160 I = J + 1, N
C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
$ B( I, L )*TEMP2
160 CONTINUE
C( J, J ) = DBLE( C( J, J ) ) +
$ DBLE( A( J, L )*TEMP1+B( J, L )*TEMP2 )
END IF
170 CONTINUE
180 CONTINUE
END IF
ELSE
*
* Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A +
* C.
*
IF( UPPER ) THEN
DO 210 J = 1, N
DO 200 I = 1, J
TEMP1 = ZERO
TEMP2 = ZERO
DO 190 L = 1, K
TEMP1 = TEMP1 + DCONJG( A( L, I ) )*B( L, J )
TEMP2 = TEMP2 + DCONJG( B( L, I ) )*A( L, J )
190 CONTINUE
IF( I.EQ.J ) THEN
IF( BETA.EQ.DBLE( ZERO ) ) THEN
C( J, J ) = DBLE( ALPHA*TEMP1+DCONJG( ALPHA )*
$ TEMP2 )
ELSE
C( J, J ) = BETA*DBLE( C( J, J ) ) +
$ DBLE( ALPHA*TEMP1+DCONJG( ALPHA )*
$ TEMP2 )
END IF
ELSE
IF( BETA.EQ.DBLE( ZERO ) ) THEN
C( I, J ) = ALPHA*TEMP1 + DCONJG( ALPHA )*TEMP2
ELSE
C( I, J ) = BETA*C( I, J ) + ALPHA*TEMP1 +
$ DCONJG( ALPHA )*TEMP2
END IF
END IF
200 CONTINUE
210 CONTINUE
ELSE
DO 240 J = 1, N
DO 230 I = J, N
TEMP1 = ZERO
TEMP2 = ZERO
DO 220 L = 1, K
TEMP1 = TEMP1 + DCONJG( A( L, I ) )*B( L, J )
TEMP2 = TEMP2 + DCONJG( B( L, I ) )*A( L, J )
220 CONTINUE
IF( I.EQ.J ) THEN
IF( BETA.EQ.DBLE( ZERO ) ) THEN
C( J, J ) = DBLE( ALPHA*TEMP1+DCONJG( ALPHA )*
$ TEMP2 )
ELSE
C( J, J ) = BETA*DBLE( C( J, J ) ) +
$ DBLE( ALPHA*TEMP1+DCONJG( ALPHA )*
$ TEMP2 )
END IF
ELSE
IF( BETA.EQ.DBLE( ZERO ) ) THEN
C( I, J ) = ALPHA*TEMP1 + DCONJG( ALPHA )*TEMP2
ELSE
C( I, J ) = BETA*C( I, J ) + ALPHA*TEMP1 +
$ DCONJG( ALPHA )*TEMP2
END IF
END IF
230 CONTINUE
240 CONTINUE
END IF
END IF
*
RETURN
*
* End of ZHER2K.
*
END
|