File: calerf.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (341 lines) | stat: -rw-r--r-- 14,026 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
      SUBROUTINE CALERF(ARG,RESULT,JINT)
C------------------------------------------------------------------
C
C DERF  --> DERFF
C DERFC --> DERFCF
C because DERF and DERFC already defined in libf2c
C
C This packet evaluates  erf(x),  erfc(x),  and  exp(x*x)*erfc(x)
C   for a real argument  x.  It contains three FUNCTION type
C   subprograms: ERF, ERFC, and ERFCX (or DERFF, DERFCF, and DERFCX),
C   and one SUBROUTINE type subprogram, CALERF.  The calling
C   statements for the primary entries are:
C
C                   Y=ERF(X)     (or   Y=DERFF(X)),
C
C                   Y=ERFC(X)    (or   Y=DERFCF(X)),
C   and
C                   Y=ERFCX(X)   (or   Y=DERFCX(X)).
C
C   The routine  CALERF  is intended for internal packet use only,
C   all computations within the packet being concentrated in this
C   routine.  The function subprograms invoke  CALERF  with the
C   statement
C
C          CALL CALERF(ARG,RESULT,JINT)
C
C   where the parameter usage is as follows
C
C      Function                     Parameters for CALERF
C       call              ARG                  Result          JINT
C
C     ERF(ARG)      ANY REAL ARGUMENT         ERF(ARG)          0
C     ERFC(ARG)     ABS(ARG) .LT. XBIG        ERFC(ARG)         1
C     ERFCX(ARG)    XNEG .LT. ARG .LT. XMAX   ERFCX(ARG)        2
C
C   The main computation evaluates near-minimax approximations
C   from "Rational Chebyshev approximations for the error function"
C   by W. J. Cody, Math. Comp., 1969, PP. 631-638.  This
C   transportable program uses rational functions that theoretically
C   approximate  erf(x)  and  erfc(x)  to at least 18 significant
C   decimal digits.  The accuracy achieved depends on the arithmetic
C   system, the compiler, the intrinsic functions, and proper
C   selection of the machine-dependent constants.
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C   XMIN   = the smallest positive floating-point number.
C   XINF   = the largest positive finite floating-point number.
C   XNEG   = the largest negative argument acceptable to ERFCX;
C            the negative of the solution to the equation
C            2*exp(x*x) = XINF.
C   XSMALL = argument below which erf(x) may be represented by
C            2*x/sqrt(pi)  and above which  x*x  will not underflow.
C            A conservative value is the largest machine number X
C            such that   1.0 + X = 1.0   to machine precision.
C   XBIG   = largest argument acceptable to ERFC;  solution to
C            the equation:  W(x) * (1-0.5/x**2) = XMIN,  where
C            W(x) = exp(-x*x)/[x*sqrt(pi)].
C   XHUGE  = argument above which  1.0 - 1/(2*x*x) = 1.0  to
C            machine precision.  A conservative value is
C            1/[2*sqrt(XSMALL)]
C   XMAX   = largest acceptable argument to ERFCX; the minimum
C            of XINF and 1/[sqrt(pi)*XMIN].
C
C   Approximate values for some important machines are:
C
C                          XMIN       XINF        XNEG     XSMALL
C
C  CDC 7600      (S.P.)  3.13E-294   1.26E+322   -27.220  7.11E-15
C  CRAY-1        (S.P.)  4.58E-2467  5.45E+2465  -75.345  7.11E-15
C  IEEE (IBM/XT,
C    SUN, etc.)  (S.P.)  1.18E-38    3.40E+38     -9.382  5.96E-8
C  IEEE (IBM/XT,
C    SUN, etc.)  (D.P.)  2.23D-308   1.79D+308   -26.628  1.11D-16
C  IBM 195       (D.P.)  5.40D-79    7.23E+75    -13.190  1.39D-17
C  UNIVAC 1108   (D.P.)  2.78D-309   8.98D+307   -26.615  1.73D-18
C  VAX D-Format  (D.P.)  2.94D-39    1.70D+38     -9.345  1.39D-17
C  VAX G-Format  (D.P.)  5.56D-309   8.98D+307   -26.615  1.11D-16
C
C
C                          XBIG       XHUGE       XMAX
C
C  CDC 7600      (S.P.)  25.922      8.39E+6     1.80X+293
C  CRAY-1        (S.P.)  75.326      8.39E+6     5.45E+2465
C  IEEE (IBM/XT,
C    SUN, etc.)  (S.P.)   9.194      2.90E+3     4.79E+37
C  IEEE (IBM/XT,
C    SUN, etc.)  (D.P.)  26.543      6.71D+7     2.53D+307
C  IBM 195       (D.P.)  13.306      1.90D+8     7.23E+75
C  UNIVAC 1108   (D.P.)  26.582      5.37D+8     8.98D+307
C  VAX D-Format  (D.P.)   9.269      1.90D+8     1.70D+38
C  VAX G-Format  (D.P.)  26.569      6.71D+7     8.98D+307
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C  The program returns  ERFC = 0      for  ARG .GE. XBIG;
C
C                       ERFCX = XINF  for  ARG .LT. XNEG;
C      and
C                       ERFCX = 0     for  ARG .GE. XMAX.
C
C
C Intrinsic functions required are:
C
C     ABS, AINT, EXP
C
C
C  Author: W. J. Cody
C          Mathematics and Computer Science Division
C          Argonne National Laboratory
C          Argonne, IL 60439
C
C  Latest modification: March 19, 1990
C
C------------------------------------------------------------------
      INTEGER I,JINT
CS    REAL
      DOUBLE PRECISION
     1     A,ARG,B,C,D,DEL,FOUR,HALF,P,ONE,Q,RESULT,SIXTEN,SQRPI,
     2     TWO,THRESH,X,XBIG,XDEN,XHUGE,XINF,XMAX,XNEG,XNUM,XSMALL,
     3     Y,YSQ,ZERO
      DIMENSION A(5),B(4),C(9),D(8),P(6),Q(5)
C------------------------------------------------------------------
C  Mathematical constants
C------------------------------------------------------------------
CS    DATA FOUR,ONE,HALF,TWO,ZERO/4.0E0,1.0E0,0.5E0,2.0E0,0.0E0/,
CS   1     SQRPI/5.6418958354775628695E-1/,THRESH/0.46875E0/,
CS   2     SIXTEN/16.0E0/
      DATA FOUR,ONE,HALF,TWO,ZERO/4.0D0,1.0D0,0.5D0,2.0D0,0.0D0/,
     1     SQRPI/5.6418958354775628695D-1/,THRESH/0.46875D0/,
     2     SIXTEN/16.0D0/
C------------------------------------------------------------------
C  Machine-dependent constants
C------------------------------------------------------------------
CS    DATA XINF,XNEG,XSMALL/3.40E+38,-9.382E0,5.96E-8/,
CS   1     XBIG,XHUGE,XMAX/9.194E0,2.90E3,4.79E37/
      DATA XINF,XNEG,XSMALL/1.79D308,-26.628D0,1.11D-16/,
     1     XBIG,XHUGE,XMAX/26.543D0,6.71D7,2.53D307/
C------------------------------------------------------------------
C  Coefficients for approximation to  erf  in first interval
C------------------------------------------------------------------
CS    DATA A/3.16112374387056560E00,1.13864154151050156E02,
CS   1       3.77485237685302021E02,3.20937758913846947E03,
CS   2       1.85777706184603153E-1/
CS    DATA B/2.36012909523441209E01,2.44024637934444173E02,
CS   1       1.28261652607737228E03,2.84423683343917062E03/
      DATA A/3.16112374387056560D00,1.13864154151050156D02,
     1       3.77485237685302021D02,3.20937758913846947D03,
     2       1.85777706184603153D-1/
      DATA B/2.36012909523441209D01,2.44024637934444173D02,
     1       1.28261652607737228D03,2.84423683343917062D03/
C------------------------------------------------------------------
C  Coefficients for approximation to  erfc  in second interval
C------------------------------------------------------------------
CS    DATA C/5.64188496988670089E-1,8.88314979438837594E0,
CS   1       6.61191906371416295E01,2.98635138197400131E02,
CS   2       8.81952221241769090E02,1.71204761263407058E03,
CS   3       2.05107837782607147E03,1.23033935479799725E03,
CS   4       2.15311535474403846E-8/
CS    DATA D/1.57449261107098347E01,1.17693950891312499E02,
CS   1       5.37181101862009858E02,1.62138957456669019E03,
CS   2       3.29079923573345963E03,4.36261909014324716E03,
CS   3       3.43936767414372164E03,1.23033935480374942E03/
      DATA C/5.64188496988670089D-1,8.88314979438837594D0,
     1       6.61191906371416295D01,2.98635138197400131D02,
     2       8.81952221241769090D02,1.71204761263407058D03,
     3       2.05107837782607147D03,1.23033935479799725D03,
     4       2.15311535474403846D-8/
      DATA D/1.57449261107098347D01,1.17693950891312499D02,
     1       5.37181101862009858D02,1.62138957456669019D03,
     2       3.29079923573345963D03,4.36261909014324716D03,
     3       3.43936767414372164D03,1.23033935480374942D03/
C------------------------------------------------------------------
C  Coefficients for approximation to  erfc  in third interval
C------------------------------------------------------------------
CS    DATA P/3.05326634961232344E-1,3.60344899949804439E-1,
CS   1       1.25781726111229246E-1,1.60837851487422766E-2,
CS   2       6.58749161529837803E-4,1.63153871373020978E-2/
CS    DATA Q/2.56852019228982242E00,1.87295284992346047E00,
CS   1       5.27905102951428412E-1,6.05183413124413191E-2,
CS   2       2.33520497626869185E-3/
      DATA P/3.05326634961232344D-1,3.60344899949804439D-1,
     1       1.25781726111229246D-1,1.60837851487422766D-2,
     2       6.58749161529837803D-4,1.63153871373020978D-2/
      DATA Q/2.56852019228982242D00,1.87295284992346047D00,
     1       5.27905102951428412D-1,6.05183413124413191D-2,
     2       2.33520497626869185D-3/
C------------------------------------------------------------------
      X = ARG
      Y = ABS(X)
      IF (Y .LE. THRESH) THEN
C------------------------------------------------------------------
C  Evaluate  erf  for  |X| <= 0.46875
C------------------------------------------------------------------
            YSQ = ZERO
            IF (Y .GT. XSMALL) YSQ = Y * Y
            XNUM = A(5)*YSQ
            XDEN = YSQ
            DO 20 I = 1, 3
               XNUM = (XNUM + A(I)) * YSQ
               XDEN = (XDEN + B(I)) * YSQ
   20       CONTINUE
            RESULT = X * (XNUM + A(4)) / (XDEN + B(4))
            IF (JINT .NE. 0) RESULT = ONE - RESULT
            IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT
            GO TO 800
C------------------------------------------------------------------
C  Evaluate  erfc  for 0.46875 <= |X| <= 4.0
C------------------------------------------------------------------
         ELSE IF (Y .LE. FOUR) THEN
            XNUM = C(9)*Y
            XDEN = Y
            DO 120 I = 1, 7
               XNUM = (XNUM + C(I)) * Y
               XDEN = (XDEN + D(I)) * Y
  120       CONTINUE
            RESULT = (XNUM + C(8)) / (XDEN + D(8))
            IF (JINT .NE. 2) THEN
               YSQ = AINT(Y*SIXTEN)/SIXTEN
               DEL = (Y-YSQ)*(Y+YSQ)
               RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT
            END IF
C------------------------------------------------------------------
C  Evaluate  erfc  for |X| > 4.0
C------------------------------------------------------------------
         ELSE
            RESULT = ZERO
            IF (Y .GE. XBIG) THEN
               IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300
               IF (Y .GE. XHUGE) THEN
                  RESULT = SQRPI / Y
                  GO TO 300
               END IF
            END IF
            YSQ = ONE / (Y * Y)
            XNUM = P(6)*YSQ
            XDEN = YSQ
            DO 240 I = 1, 4
               XNUM = (XNUM + P(I)) * YSQ
               XDEN = (XDEN + Q(I)) * YSQ
  240       CONTINUE
            RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5))
            RESULT = (SQRPI -  RESULT) / Y
            IF (JINT .NE. 2) THEN
               YSQ = AINT(Y*SIXTEN)/SIXTEN
               DEL = (Y-YSQ)*(Y+YSQ)
               RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT
            END IF
      END IF
C------------------------------------------------------------------
C  Fix up for negative argument, erf, etc.
C------------------------------------------------------------------
  300 IF (JINT .EQ. 0) THEN
            RESULT = (HALF - RESULT) + HALF
            IF (X .LT. ZERO) RESULT = -RESULT
         ELSE IF (JINT .EQ. 1) THEN
            IF (X .LT. ZERO) RESULT = TWO - RESULT
         ELSE
            IF (X .LT. ZERO) THEN
               IF (X .LT. XNEG) THEN
                     RESULT = XINF
                  ELSE
                     YSQ = AINT(X*SIXTEN)/SIXTEN
                     DEL = (X-YSQ)*(X+YSQ)
                     Y = EXP(YSQ*YSQ) * EXP(DEL)
                     RESULT = (Y+Y) - RESULT
               END IF
            END IF
      END IF
  800 RETURN
C---------- Last card of CALERF ----------
      END
CS    REAL FUNCTION ERF(X)
      DOUBLE PRECISION FUNCTION DERFF(X)
C--------------------------------------------------------------------
C
C This subprogram computes approximate values for erf(x).
C   (see comments heading CALERF).
C
C   Author/date: W. J. Cody, January 8, 1985
C
C--------------------------------------------------------------------
      INTEGER JINT
CS    REAL             X, RESULT
      DOUBLE PRECISION X, RESULT
C------------------------------------------------------------------
      JINT = 0
      CALL CALERF(X,RESULT,JINT)
CS    ERF = RESULT
      DERFF = RESULT
      RETURN
C---------- Last card of DERFF ----------
      END
CS    REAL FUNCTION ERFC(X)
      DOUBLE PRECISION FUNCTION DERFCF(X)
C--------------------------------------------------------------------
C
C This subprogram computes approximate values for erfc(x).
C   (see comments heading CALERF).
C
C   Author/date: W. J. Cody, January 8, 1985
C
C--------------------------------------------------------------------
      INTEGER JINT
CS    REAL             X, RESULT
      DOUBLE PRECISION X, RESULT
C------------------------------------------------------------------
      JINT = 1
      CALL CALERF(X,RESULT,JINT)
CS    ERFC = RESULT
      DERFCF = RESULT
      RETURN
C---------- Last card of DERFCF ----------
      END
CS    REAL FUNCTION ERFCX(X)
      DOUBLE PRECISION FUNCTION DERFCX(X)
C------------------------------------------------------------------
C
C This subprogram computes approximate values for exp(x*x) * erfc(x).
C   (see comments heading CALERF).
C
C   Author/date: W. J. Cody, March 30, 1987
C
C------------------------------------------------------------------
      INTEGER JINT
CS    REAL             X, RESULT
      DOUBLE PRECISION X, RESULT
C------------------------------------------------------------------
      JINT = 2
      CALL CALERF(X,RESULT,JINT)
CS    ERFCX = RESULT
      DERFCX = RESULT
      RETURN
C---------- Last card of DERFCX ----------
      END