1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
|
SUBROUTINE CSHEP2 (N,X,Y,F,NC,NW,NR, LCELL,LNEXT,XMIN,
. YMIN,DX,DY,RMAX,RW,A,IER)
INTEGER N, NC, NW, NR, LCELL(NR,NR), LNEXT(N), IER
DOUBLE PRECISION X(N), Y(N), F(N), XMIN, YMIN, DX,
. DY, RMAX, RW(N), A(9,N)
C
C***********************************************************
C
C From CSHEP2D
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 02/13/97
C
C This subroutine computes a set of parameters defining a
C C2 (twice continuously differentiable) bivariate function
C C(X,Y) which interpolates data values F at a set of N
C arbitrarily distributed points (X,Y) in the plane (nodes).
C The interpolant C may be evaluated at an arbitrary point
C by function CS2VAL, and its first partial derivatives are
C computed by Subroutine CS2GRD.
C
C The interpolation scheme is a modified Cubic Shepard
C method:
C
C C = [W(1)*C(1)+W(2)*C(2)+..+W(N)*C(N)]/[W(1)+W(2)+..+W(N)]
C
C for bivariate functions W(k) and C(k). The nodal func-
C tions are given by
C
C C(k)(x,y) = A(1,k)*(x-X(k))**3 +
C A(2,k)*(x-X(k))**2*(y-Y(k)) +
C A(3,k)*(x-X(k))*(y-Y(k))**2 +
C A(4,k)*(y-Y(k))**3 + A(5,k)*(x-X(k))**2 +
C A(6,k)*(x-X(k))*(y-Y(k)) + A(7,k)*(y-Y(k))**2
C + A(8,k)*(x-X(k)) + A(9,k)*(y-Y(k)) + F(k) .
C
C Thus, C(k) is a cubic function which interpolates the data
C value at node k. Its coefficients A(,k) are obtained by a
C weighted least squares fit to the closest NC data points
C with weights similar to W(k). Note that the radius of
C influence for the least squares fit is fixed for each k,
C but varies with k.
C
C The weights are taken to be
C
C W(k)(x,y) = ( (R(k)-D(k))+ / R(k)*D(k) )**3 ,
C
C where (R(k)-D(k))+ = 0 if R(k) < D(k), and D(k)(x,y) is
C the Euclidean distance between (x,y) and (X(k),Y(k)). The
C radius of influence R(k) varies with k and is chosen so
C that NW nodes are within the radius. Note that W(k) is
C not defined at node (X(k),Y(k)), but C(x,y) has limit F(k)
C as (x,y) approaches (X(k),Y(k)).
C
C On input:
C
C N = Number of nodes and data values. N .GE. 10.
C
C X,Y = Arrays of length N containing the Cartesian
C coordinates of the nodes.
C
C F = Array of length N containing the data values
C in one-to-one correspondence with the nodes.
C
C NC = Number of data points to be used in the least
C squares fit for coefficients defining the nodal
C functions C(k). Values found to be optimal for
C test data sets ranged from 11 to 25. A recom-
C mended value for general data sets is NC = 17.
C For nodes lying on (or close to) a rectangular
C grid, the recommended value is NC = 11. In any
C case, NC must be in the range 9 to Min(40,N-1).
C
C NW = Number of nodes within (and defining) the radii
C of influence R(k) which enter into the weights
C W(k). For N sufficiently large, a recommended
C value is NW = 30. In general, NW should be
C about 1.5*NC. 1 .LE. NW .LE. Min(40,N-1).
C
C NR = Number of rows and columns in the cell grid de-
C fined in Subroutine STORE2. A rectangle con-
C taining the nodes is partitioned into cells in
C order to increase search efficiency. NR =
C Sqrt(N/3) is recommended. NR .GE. 1.
C
C The above parameters are not altered by this routine.
C
C LCELL = Array of length .GE. NR**2.
C
C LNEXT = Array of length .GE. N.
C
C RW = Array of length .GE. N.
C
C A = Array of length .GE. 9N.
C
C On output:
C
C LCELL = NR by NR array of nodal indexes associated
C with cells. Refer to Subroutine STORE2.
C
C LNEXT = Array of length N containing next-node
C indexes. Refer to Subroutine STORE2.
C
C XMIN,YMIN,DX,DY = Minimum nodal coordinates and cell
C dimensions. Refer to Subroutine
C STORE2.
C
C RMAX = Largest element in RW -- maximum radius R(k).
C
C RW = Array containing the the radii R(k) which enter
C into the weights W(k).
C
C A = 9 by N array containing the coefficients for
C cubic nodal function C(k) in column k.
C
C Note that the output parameters described above are not
C defined unless IER = 0.
C
C IER = Error indicator:
C IER = 0 if no errors were encountered.
C IER = 1 if N, NC, NW, or NR is outside its
C valid range.
C IER = 2 if duplicate nodes were encountered.
C IER = 3 if all nodes are collinear.
C
C Modules required by CSHEP2: GETNP2, GIVENS, ROTATE,
C SETUP2, STORE2
C
C Intrinsic functions called by CSHEP2: ABS, DBLE, MAX,
C MIN, SQRT
C
C***********************************************************
C
INTEGER LMX
PARAMETER (LMX=40)
INTEGER I, IERR, IP1, IRM1, IROW, J, JP1, K, LMAX,
. LNP, NEQ, NN, NNC, NNR, NNW, NP, NPTS(LMX),
. NCWMAX
DOUBLE PRECISION B(10,10), C, DDX, DDY, DMIN, DTOL,
. FK, RC, RS, RSMX, RSOLD, RTOL, RWS,
. S, SF, SFC, SFS, STF, SUM, T, XK,
. XMN, YK, YMN
C
DATA RTOL/1.D-5/, DTOL/.01/
C
C Local parameters:
C
C B = Transpose of the augmented regression matrix
C C = First component of the plane rotation used to
C zero the lower triangle of B**T -- computed
C by Subroutine GIVENS
C DDX,DDY = Local variables for DX and DY
C DMIN = Minimum of the magnitudes of the diagonal
C elements of the regression matrix after
C zeros are introduced below the diagonal
C DTOL = Tolerance for detecting an ill-conditioned
C system. The system is accepted when
C DMIN*RC .GE. DTOL.
C FK = Data value at mode K -- F(K)
C I = Index for A, B, and NPTS
C IERR = Error flag for the call to Subroutine STORE2
C IP1 = I+1
C IRM1 = IROW-1
C IROW = Row index for B
C J = Index for A and B
C JP1 = J+1
C K = Nodal function index and column index for A
C LMAX = Maximum number of NPTS elements
C LMX = Maximum value of LMAX
C LNP = Current length of NPTS
C NEQ = Number of equations in the least squares fit
C NN,NNC,NNR = Local copies of N, NC, and NR
C NNW = Local copy of NW
C NP = NPTS element
C NPTS = Array containing the indexes of a sequence of
C nodes to be used in the least squares fit
C or to compute RW. The nodes are ordered
C by distance from K, and the last element
C (usually indexed by LNP) is used only to
C determine RC, or RW(K) if NW > NC.
C NCWMAX = Max(NC,NW)
C RC = Radius of influence which enters into the
C weights for C(K) (see Subroutine SETUP2)
C RS = Squared distance between K and NPTS(LNP) --
C used to compute RC and RW(K)
C RSMX = Maximum squared RW element encountered
C RSOLD = Squared distance between K and NPTS(LNP-1) --
C used to compute a relative change in RS
C between succeeding NPTS elements
C RTOL = Tolerance for detecting a sufficiently large
C relative change in RS. If the change is
C not greater than RTOL, the nodes are
C treated as being the same distance from K
C RWS = Current squared value of RW(K)
C S = Second component of the plane rotation deter-
C mined by subroutine GIVENS
C SF = Scale factor for the linear terms (columns 8
C and 9) in the least squares fit -- inverse
C of the root-mean-square distance between K
C and the nodes (other than K) in the least
C squares fit
C SFS = Scale factor for the quadratic terms (columns
C 5, 6, and 7) in the least squares fit --
C SF*SF
C SFC = Scale factor for the cubic terms (first 4
C columns) in the least squares fit -- SF**3
C STF = Marquardt stabilization factor used to damp
C out the first 4 solution components (third
C partials of the cubic) when the system is
C ill-conditioned. As STF increases, the
C fitting function approaches a quadratic
C polynomial.
C SUM = Sum of squared Euclidean distances between
C node K and the nodes used in the least
C squares fit (unless additional nodes are
C added for stability)
C T = Temporary variable for accumulating a scalar
C product in the back solve
C XK,YK = Coordinates of node K -- X(K), Y(K)
C XMN,YMN = Local variables for XMIN and YMIN
C
NN = N
NNC = NC
NNW = NW
NNR = NR
NCWMAX = MAX(NNC,NNW)
LMAX = MIN(LMX,NN-1)
IF (NNC .LT. 9 .OR. NNW .LT. 1 .OR. NCWMAX .GT.
. LMAX .OR. NNR .LT. 1) GO TO 21
C
C Create the cell data structure, and initialize RSMX.
C
CALL STORE2 (NN,X,Y,NNR, LCELL,LNEXT,XMN,YMN,DDX,DDY,
. IERR)
IF (IERR .NE. 0) GO TO 23
RSMX = 0.
C
C Outer loop on node K:
C
DO 16 K = 1,NN
XK = X(K)
YK = Y(K)
FK = F(K)
C
C Mark node K to exclude it from the search for nearest
C neighbors.
C
LNEXT(K) = -LNEXT(K)
C
C Initialize for loop on NPTS.
C
RS = 0.
SUM = 0.
RWS = 0.
RC = 0.
LNP = 0
C
C Compute NPTS, LNP, RWS, NEQ, RC, and SFS.
C
1 SUM = SUM + RS
IF (LNP .EQ. LMAX) GO TO 2
LNP = LNP + 1
RSOLD = RS
CALL GETNP2 (XK,YK,X,Y,NNR,LCELL,LNEXT,XMN,YMN,
. DDX,DDY, NP,RS)
IF (RS .EQ. 0.) GO TO 22
NPTS(LNP) = NP
IF ( (RS-RSOLD)/RS .LT. RTOL ) GO TO 1
IF (RWS .EQ. 0. .AND. LNP .GT. NNW) RWS = RS
IF (RC .EQ. 0. .AND. LNP .GT. NNC) THEN
C
C RC = 0 (not yet computed) and LNP > NC. RC = Sqrt(RS)
C is sufficiently large to (strictly) include NC nodes.
C The least squares fit will include NEQ = LNP - 1
C equations for 9 .LE. NC .LE. NEQ .LT. LMAX .LE. N-1.
C
NEQ = LNP - 1
RC = SQRT(RS)
SFS = DBLE(NEQ)/SUM
ENDIF
C
C Bottom of loop -- test for termination.
C
IF (LNP .GT. NCWMAX) GO TO 3
GO TO 1
C
C All LMAX nodes are included in NPTS. RWS and/or RC**2 is
C (arbitrarily) taken to be 10 percent larger than the
C distance RS to the last node included.
C
2 IF (RWS .EQ. 0.) RWS = 1.1*RS
IF (RC .EQ. 0.) THEN
NEQ = LMAX
RC = SQRT(1.1*RS)
SFS = DBLE(NEQ)/SUM
ENDIF
C
C Store RW(K), update RSMX if necessary, and compute SF
C and SFC.
C
3 RW(K) = SQRT(RWS)
IF (RWS .GT. RSMX) RSMX = RWS
SF = SQRT(SFS)
SFC = SF*SFS
C
C A Q-R decomposition is used to solve the least squares
C system. The transpose of the augmented regression
C matrix is stored in B with columns (rows of B) defined
C as follows: 1-4 are the cubic terms, 5-7 are the quad-
C ratic terms, 8 and 9 are the linear terms, and the last
C column is the right hand side.
C
C Set up the equations and zero out the lower triangle with
C Givens rotations.
C
I = 0
4 I = I + 1
NP = NPTS(I)
IROW = MIN(I,10)
CALL SETUP2 (XK,YK,FK,X(NP),Y(NP),F(NP),SF,SFS,
. SFC,RC, B(1,IROW))
IF (I .EQ. 1) GO TO 4
IRM1 = IROW-1
DO 5 J = 1,IRM1
JP1 = J + 1
CALL GIVENS (B(J,J),B(J,IROW),C,S)
CALL ROTATE (10-J,C,S,B(JP1,J),B(JP1,IROW))
5 CONTINUE
IF (I .LT. NEQ) GO TO 4
C
C Test the system for ill-conditioning.
C
DMIN = MIN( ABS(B(1,1)),ABS(B(2,2)),ABS(B(3,3)),
. ABS(B(4,4)),ABS(B(5,5)),ABS(B(6,6)),
. ABS(B(7,7)),ABS(B(8,8)),ABS(B(9,9)) )
IF (DMIN*RC .GE. DTOL) GO TO 11
IF (NEQ .EQ. LMAX) GO TO 7
C
C Increase RC and add another equation to the system to
C improve the conditioning. The number of NPTS elements
C is also increased if necessary.
C
6 RSOLD = RS
NEQ = NEQ + 1
IF (NEQ .EQ. LMAX) THEN
RC = SQRT(1.1*RS)
GO TO 4
ENDIF
IF (NEQ .LT. LNP) THEN
C
C NEQ < LNP.
C
NP = NPTS(NEQ+1)
RS = (X(NP)-XK)**2 + (Y(NP)-YK)**2
IF ( (RS-RSOLD)/RS .LT. RTOL ) GO TO 6
RC = SQRT(RS)
GO TO 4
ENDIF
C
C NEQ = LNP. Add an element to NPTS.
C
LNP = LNP + 1
CALL GETNP2 (XK,YK,X,Y,NNR,LCELL,LNEXT,XMN,YMN,
. DDX,DDY, NP,RS)
IF (NP .EQ. 0) GO TO 22
NPTS(LNP) = NP
IF ( (RS-RSOLD)/RS .LT. RTOL ) GO TO 6
RC = SQRT(RS)
GO TO 4
C
C Stabilize the system by damping third partials -- add
C multiples of the first four unit vectors to the first
C four equations.
C
7 STF = 1.0/RC
DO 10 I = 1,4
B(I,10) = STF
IP1 = I + 1
DO 8 J = IP1,10
B(J,10) = 0.
8 CONTINUE
DO 9 J = I,9
JP1 = J + 1
CALL GIVENS (B(J,J),B(J,10),C,S)
CALL ROTATE (10-J,C,S,B(JP1,J),B(JP1,10))
9 CONTINUE
10 CONTINUE
C
C Test the damped system for ill-conditioning.
C
DMIN = MIN( ABS(B(5,5)),ABS(B(6,6)),ABS(B(7,7)),
. ABS(B(8,8)),ABS(B(9,9)) )
IF (DMIN*RC .LT. DTOL) GO TO 23
C
C Solve the 9 by 9 triangular system for the coefficients.
C
11 DO 13 I = 9,1,-1
T = 0.
IF (I .NE. 9) THEN
IP1 = I + 1
DO 12 J = IP1,9
T = T + B(J,I)*A(J,K)
12 CONTINUE
ENDIF
A(I,K) = (B(10,I)-T)/B(I,I)
13 CONTINUE
C
C Scale the coefficients to adjust for the column scaling.
C
DO 14 I = 1,4
A(I,K) = A(I,K)*SFC
14 CONTINUE
A(5,K) = A(5,K)*SFS
A(6,K) = A(6,K)*SFS
A(7,K) = A(7,K)*SFS
A(8,K) = A(8,K)*SF
A(9,K) = A(9,K)*SF
C
C Unmark K and the elements of NPTS.
C
LNEXT(K) = -LNEXT(K)
DO 15 I = 1,LNP
NP = NPTS(I)
LNEXT(NP) = -LNEXT(NP)
15 CONTINUE
16 CONTINUE
C
C No errors encountered.
C
XMIN = XMN
YMIN = YMN
DX = DDX
DY = DDY
RMAX = SQRT(RSMX)
IER = 0
RETURN
C
C N, NC, NW, or NR is outside its valid range.
C
21 IER = 1
RETURN
C
C Duplicate nodes were encountered by GETNP2.
C
22 IER = 2
RETURN
C
C No unique solution due to collinear nodes.
C
23 XMIN = XMN
YMIN = YMN
DX = DDX
DY = DDY
IER = 3
RETURN
END
DOUBLE PRECISION FUNCTION CS2VAL (PX,PY,N,X,Y,F,NR,
. LCELL,LNEXT,XMIN,YMIN,DX,DY,RMAX,RW,A)
INTEGER N, NR, LCELL(NR,NR), LNEXT(N)
DOUBLE PRECISION PX, PY, X(N), Y(N), F(N), XMIN, YMIN,
. DX, DY, RMAX, RW(N), A(9,N)
C
C***********************************************************
C
C From CSHEP2D
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 02/03/97
C
C This function returns the value C(PX,PY), where C is the
C weighted sum of cubic nodal functions defined in Subrou-
C tine CSHEP2. CS2GRD may be called to compute a gradient
C of C along with the value, and/or to test for errors.
C CS2HES may be called to compute a value, first partial
C derivatives, and second partial derivatives at a point.
C
C On input:
C
C PX,PY = Cartesian coordinates of the point P at
C which C is to be evaluated.
C
C N = Number of nodes and data values defining C.
C N .GE. 10.
C
C X,Y,F = Arrays of length N containing the nodes and
C data values interpolated by C.
C
C NR = Number of rows and columns in the cell grid.
C Refer to Subroutine STORE2. NR .GE. 1.
C
C LCELL = NR by NR array of nodal indexes associated
C with cells. Refer to Subroutine STORE2.
C
C LNEXT = Array of length N containing next-node
C indexes. Refer to Subroutine STORE2.
C
C XMIN,YMIN,DX,DY = Minimum nodal coordinates and cell
C dimensions. DX and DY must be
C positive. Refer to Subroutine
C STORE2.
C
C RMAX = Largest element in RW -- maximum radius R(k).
C
C RW = Array containing the the radii R(k) which enter
C into the weights W(k) defining C.
C
C A = 9 by N array containing the coefficients for
C cubic nodal function C(k) in column k.
C
C Input parameters are not altered by this function. The
C parameters other than PX and PY should be input unaltered
C from their values on output from CSHEP2. This function
C should not be called if a nonzero error flag was returned
C by CSHEP2.
C
C On output:
C
C CS2VAL = Function value C(PX,PY) unless N, NR, DX,
C DY, or RMAX is invalid, in which case no
C value is returned.
C
C Modules required by CS2VAL: NONE
C
C Intrinsic functions called by CS2VAL: INT, SQRT
C
C***********************************************************
C
INTEGER I, IMAX, IMIN, J, JMAX, JMIN, K, KP
DOUBLE PRECISION D, DELX, DELY, R, SW, SWC, W, XP, YP
C
C Local parameters:
C
C D = Distance between P and node K
C DELX = XP - X(K)
C DELY = YP - Y(K)
C I = Cell row index in the range IMIN to IMAX
C IMIN,IMAX = Range of cell row indexes of the cells
C intersected by a disk of radius RMAX
C centered at P
C J = Cell column index in the range JMIN to JMAX
C JMIN,JMAX = Range of cell column indexes of the cells
C intersected by a disk of radius RMAX
C centered at P
C K = Index of a node in cell (I,J)
C KP = Previous value of K in the sequence of nodes
C in cell (I,J)
C R = Radius of influence for node K
C SW = Sum of weights W(K)
C SWC = Sum of weighted nodal function values at P
C W = Weight W(K) value at P: ((R-D)+/(R*D))**3,
C where (R-D)+ = 0 if R < D
C XP,YP = Local copies of PX and PY -- coordinates of P
C
XP = PX
YP = PY
IF (N .LT. 10 .OR. NR .LT. 1 .OR. DX .LE. 0. .OR.
. DY .LE. 0. .OR. RMAX .LT. 0.) RETURN
C
C Set IMIN, IMAX, JMIN, and JMAX to cell indexes defining
C the range of the search for nodes whose radii include
C P. The cells which must be searched are those inter-
C sected by (or contained in) a circle of radius RMAX
C centered at P.
C
IMIN = INT((XP-XMIN-RMAX)/DX) + 1
IMAX = INT((XP-XMIN+RMAX)/DX) + 1
IF (IMIN .LT. 1) IMIN = 1
IF (IMAX .GT. NR) IMAX = NR
JMIN = INT((YP-YMIN-RMAX)/DY) + 1
JMAX = INT((YP-YMIN+RMAX)/DY) + 1
IF (JMIN .LT. 1) JMIN = 1
IF (JMAX .GT. NR) JMAX = NR
C
C The following is a test for no cells within the circle
C of radius RMAX.
C
IF (IMIN .GT. IMAX .OR. JMIN .GT. JMAX) GO TO 6
C
C Accumulate weight values in SW and weighted nodal function
C values in SWC. The weights are W(K) = ((R-D)+/(R*D))**3
C for R = RW(K) and D = distance between P and node K.
C
SW = 0.
SWC = 0.
C
C Outer loop on cells (I,J).
C
DO 4 J = JMIN,JMAX
DO 3 I = IMIN,IMAX
K = LCELL(I,J)
IF (K .EQ. 0) GO TO 3
C
C Inner loop on nodes K.
C
1 DELX = XP - X(K)
DELY = YP - Y(K)
D = SQRT(DELX*DELX + DELY*DELY)
R = RW(K)
IF (D .GE. R) GO TO 2
IF (D .EQ. 0.) GO TO 5
W = (1.0/D - 1.0/R)**3
SW = SW + W
SWC = SWC + W*( ( (A(1,K)*DELX+A(2,K)*DELY+
. A(5,K))*DELX + (A(3,K)*DELY+
. A(6,K))*DELY + A(8,K) )*DELX +
. ( (A(4,K)*DELY+A(7,K))*DELY +
. A(9,K) )*DELY + F(K) )
C
C Bottom of loop on nodes in cell (I,J).
C
2 KP = K
K = LNEXT(KP)
IF (K .NE. KP) GO TO 1
3 CONTINUE
4 CONTINUE
C
C SW = 0 iff P is not within the radius R(K) for any node K.
C
IF (SW .EQ. 0.) GO TO 6
CS2VAL = SWC/SW
RETURN
C
C (PX,PY) = (X(K),Y(K)).
C
5 CS2VAL = F(K)
RETURN
C
C All weights are 0 at P.
C
6 CS2VAL = 0.
RETURN
END
SUBROUTINE CS2GRD (PX,PY,N,X,Y,F,NR,LCELL,LNEXT,XMIN,
. YMIN,DX,DY,RMAX,RW,A, C,CX,CY,IER)
INTEGER N, NR, LCELL(NR,NR), LNEXT(N), IER
DOUBLE PRECISION PX, PY, X(N), Y(N), F(N), XMIN, YMIN,
. DX, DY, RMAX, RW(N), A(9,N), C, CX,
. CY
C
C***********************************************************
C
C From CSHEP2D
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 02/03/97
C
C This subroutine computes the value and gradient at P =
C (PX,PY) of the interpolatory function C defined in Sub-
C routine CSHEP2. C is a weighted sum of cubic nodal
C functions.
C
C On input:
C
C PX,PY = Cartesian coordinates of the point P at
C which C and its partial derivatives are
C to be evaluated.
C
C N = Number of nodes and data values defining C.
C N .GE. 10.
C
C X,Y,F = Arrays of length N containing the nodes and
C data values interpolated by C.
C
C NR = Number of rows and columns in the cell grid.
C Refer to Subroutine STORE2. NR .GE. 1.
C
C LCELL = NR by NR array of nodal indexes associated
C with cells. Refer to Subroutine STORE2.
C
C LNEXT = Array of length N containing next-node
C indexes. Refer to Subroutine STORE2.
C
C XMIN,YMIN,DX,DY = Minimum nodal coordinates and cell
C dimensions. DX and DY must be
C positive. Refer to Subroutine
C STORE2.
C
C RMAX = Largest element in RW -- maximum radius R(k).
C
C RW = Array of length N containing the the radii R(k)
C which enter into the weights W(k) defining C.
C
C A = 9 by N array containing the coefficients for
C cubic nodal function C(k) in column k.
C
C Input parameters are not altered by this subroutine.
C The parameters other than PX and PY should be input
C unaltered from their values on output from CSHEP2. This
C subroutine should not be called if a nonzero error flag
C was returned by CSHEP2.
C
C On output:
C
C C = Value of C at (PX,PY) unless IER .EQ. 1, in
C which case no values are returned.
C
C CX,CY = First partial derivatives of C at (PX,PY)
C unless IER .EQ. 1.
C
C IER = Error indicator:
C IER = 0 if no errors were encountered.
C IER = 1 if N, NR, DX, DY or RMAX is invalid.
C IER = 2 if no errors were encountered but
C (PX,PY) is not within the radius R(k)
C for any node k (and thus C=CX=CY=0).
C
C Modules required by CS2GRD: None
C
C Intrinsic functions called by CS2GRD: INT, SQRT
C
C***********************************************************
C
INTEGER I, IMAX, IMIN, J, JMAX, JMIN, K, KP
DOUBLE PRECISION CK, CKX, CKY, D, DELX, DELY, R, SW,
. SWC, SWCX, SWCY, SWS, SWX, SWY, T, W,
. WX, WY, XP, YP
C
C Local parameters:
C
C CK = Value of cubic nodal function C(K) at P
C CKX,CKY = Partial derivatives of C(K) with respect to X
C and Y, respectively
C D = Distance between P and node K
C DELX = XP - X(K)
C DELY = YP - Y(K)
C I = Cell row index in the range IMIN to IMAX
C IMIN,IMAX = Range of cell row indexes of the cells
C intersected by a disk of radius RMAX
C centered at P
C J = Cell column index in the range JMIN to JMAX
C JMIN,JMAX = Range of cell column indexes of the cells
C intersected by a disk of radius RMAX
C centered at P
C K = Index of a node in cell (I,J)
C KP = Previous value of K in the sequence of nodes
C in cell (I,J)
C R = Radius of influence for node K
C SW = Sum of weights W(K)
C SWC = Sum of weighted nodal function values at P
C SWCX,SWCY = Partial derivatives of SWC with respect to X
C and Y, respectively
C SWS = SW**2
C SWX,SWY = Partial derivatives of SW with respect to X
C and Y, respectively
C T = Temporary variable
C W = Weight W(K) value at P: ((R-D)+/(R*D))**3,
C where (R-D)+ = 0 if R < D
C WX,WY = Partial derivatives of W with respect to X
C and Y, respectively
C XP,YP = Local copies of PX and PY -- coordinates of P
C
XP = PX
YP = PY
IF (N .LT. 10 .OR. NR .LT. 1 .OR. DX .LE. 0. .OR.
. DY .LE. 0. .OR. RMAX .LT. 0.) GO TO 6
C
C Set IMIN, IMAX, JMIN, and JMAX to cell indexes defining
C the range of the search for nodes whose radii include
C P. The cells which must be searched are those inter-
C sected by (or contained in) a circle of radius RMAX
C centered at P.
C
IMIN = INT((XP-XMIN-RMAX)/DX) + 1
IMAX = INT((XP-XMIN+RMAX)/DX) + 1
IF (IMIN .LT. 1) IMIN = 1
IF (IMAX .GT. NR) IMAX = NR
JMIN = INT((YP-YMIN-RMAX)/DY) + 1
JMAX = INT((YP-YMIN+RMAX)/DY) + 1
IF (JMIN .LT. 1) JMIN = 1
IF (JMAX .GT. NR) JMAX = NR
C
C The following is a test for no cells within the circle
C of radius RMAX.
C
IF (IMIN .GT. IMAX .OR. JMIN .GT. JMAX) GO TO 7
C
C C = SWC/SW = Sum(W(K)*C(K))/Sum(W(K)), where the sum is
C from K = 1 to N, C(K) is the cubic nodal function value,
C and W(K) = ((R-D)+/(R*D))**3 for radius R(K) and dist-
C ance D(K). Thus
C
C CX = (SWCX*SW - SWC*SWX)/SW**2 and
C CY = (SWCY*SW - SWC*SWY)/SW**2
C
C where SWCX and SWX are partial derivatives with respect
C to X of SWC and SW, respectively. SWCY and SWY are de-
C fined similarly.
C
SW = 0.
SWX = 0.
SWY = 0.
SWC = 0.
SWCX = 0.
SWCY = 0.
C
C Outer loop on cells (I,J).
C
DO 4 J = JMIN,JMAX
DO 3 I = IMIN,IMAX
K = LCELL(I,J)
IF (K .EQ. 0) GO TO 3
C
C Inner loop on nodes K.
C
1 DELX = XP - X(K)
DELY = YP - Y(K)
D = SQRT(DELX*DELX + DELY*DELY)
R = RW(K)
IF (D .GE. R) GO TO 2
IF (D .EQ. 0.) GO TO 5
T = (1.0/D - 1.0/R)
W = T**3
T = -3.0*T*T/(D**3)
WX = DELX*T
WY = DELY*T
T = A(2,K)*DELX + A(3,K)*DELY + A(6,K)
CKY = ( 3.0*A(4,K)*DELY + A(3,K)*DELX +
. 2.0*A(7,K) )*DELY + T*DELX + A(9,K)
T = T*DELY + A(8,K)
CKX = ( 3.0*A(1,K)*DELX + A(2,K)*DELY +
. 2.0*A(5,K) )*DELX + T
CK = ( (A(1,K)*DELX+A(5,K))*DELX + T )*DELX +
. ( (A(4,K)*DELY+A(7,K))*DELY + A(9,K) )*DELY +
. F(K)
SW = SW + W
SWX = SWX + WX
SWY = SWY + WY
SWC = SWC + W*CK
SWCX = SWCX + WX*CK + W*CKX
SWCY = SWCY + WY*CK + W*CKY
C
C Bottom of loop on nodes in cell (I,J).
C
2 KP = K
K = LNEXT(KP)
IF (K .NE. KP) GO TO 1
3 CONTINUE
4 CONTINUE
C
C SW = 0 iff P is not within the radius R(K) for any node K.
C
IF (SW .EQ. 0.) GO TO 7
C = SWC/SW
SWS = SW*SW
CX = (SWCX*SW - SWC*SWX)/SWS
CY = (SWCY*SW - SWC*SWY)/SWS
IER = 0
RETURN
C
C (PX,PY) = (X(K),Y(K)).
C
5 C = F(K)
CX = A(8,K)
CY = A(9,K)
IER = 0
RETURN
C
C Invalid input parameter.
C
6 IER = 1
RETURN
C
C No cells contain a point within RMAX of P, or
C SW = 0 and thus D .GE. RW(K) for all K.
C
7 C = 0.
CX = 0.
CY = 0.
IER = 2
RETURN
END
SUBROUTINE CS2HES (PX,PY,N,X,Y,F,NR,LCELL,LNEXT,XMIN,
. YMIN,DX,DY,RMAX,RW,A, C,CX,CY,CXX,
. CXY,CYY,IER)
INTEGER N, NR, LCELL(NR,NR), LNEXT(N), IER
DOUBLE PRECISION PX, PY, X(N), Y(N), F(N), XMIN, YMIN,
. DX, DY, RMAX, RW(N), A(9,N), C, CX,
. CY, CXX, CXY, CYY
C
C***********************************************************
C
C From CSHEP2D
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 02/03/97
C
C This subroutine computes the value, gradient, and
C Hessian at P = (PX,PY) of the interpolatory function C
C defined in Subroutine CSHEP2. C is a weighted sum of
C cubic nodal functions.
C
C On input:
C
C PX,PY = Cartesian coordinates of the point P at
C which C and its partial derivatives are
C to be evaluated.
C
C N = Number of nodes and data values defining C.
C N .GE. 10.
C
C X,Y,F = Arrays of length N containing the nodes and
C data values interpolated by C.
C
C NR = Number of rows and columns in the cell grid.
C Refer to Subroutine STORE2. NR .GE. 1.
C
C LCELL = NR by NR array of nodal indexes associated
C with cells. Refer to Subroutine STORE2.
C
C LNEXT = Array of length N containing next-node
C indexes. Refer to Subroutine STORE2.
C
C XMIN,YMIN,DX,DY = Minimum nodal coordinates and cell
C dimensions. DX and DY must be
C positive. Refer to Subroutine
C STORE2.
C
C RMAX = Largest element in RW -- maximum radius R(k).
C
C RW = Array of length N containing the the radii R(k)
C which enter into the weights W(k) defining C.
C
C A = 9 by N array containing the coefficients for
C cubic nodal function C(k) in column k.
C
C Input parameters are not altered by this subroutine.
C The parameters other than PX and PY should be input
C unaltered from their values on output from CSHEP2. This
C subroutine should not be called if a nonzero error flag
C was returned by CSHEP2.
C
C On output:
C
C C = Value of C at (PX,PY) unless IER .EQ. 1, in
C which case no values are returned.
C
C CX,CY = First partial derivatives of C at (PX,PY)
C unless IER .EQ. 1.
C
C CXX,CXY,CYY = Second partial derivatives of C at
C (PX,PY) unless IER .EQ. 1.
C
C IER = Error indicator:
C IER = 0 if no errors were encountered.
C IER = 1 if N, NR, DX, DY or RMAX is invalid.
C IER = 2 if no errors were encountered but
C (PX,PY) is not within the radius R(k)
C for any node k (and thus C = 0).
C
C Modules required by CS2HES: None
C
C Intrinsic functions called by CS2HES: INT, SQRT
C
C***********************************************************
C
INTEGER I, IMAX, IMIN, J, JMAX, JMIN, K, KP
DOUBLE PRECISION CK, CKX, CKXX, CKXY, CKY, CKYY, D,
. DELX, DELY, DXSQ, DYSQ, R, SW, SWC,
. SWCX, SWCXX, SWCXY, SWCY, SWCYY, SWS,
. SWX, SWXX, SWXY, SWY, SWYY, T1, T2,
. T3, T4, W, WX, WXX, WXY, WY, WYY, XP,
. YP
C
C Local parameters:
C
C CK = Value of cubic nodal function C(K) at P
C CKX,CKY = Partial derivatives of C(K) with respect to X
C and Y, respectively
C CKXX,CKXY,CKYY = Second partial derivatives of CK
C D = Distance between P and node K
C DELX = XP - X(K)
C DELY = YP - Y(K)
C DXSQ,DYSQ = DELX**2, DELY**2
C I = Cell row index in the range IMIN to IMAX
C IMIN,IMAX = Range of cell row indexes of the cells
C intersected by a disk of radius RMAX
C centered at P
C J = Cell column index in the range JMIN to JMAX
C JMIN,JMAX = Range of cell column indexes of the cells
C intersected by a disk of radius RMAX
C centered at P
C K = Index of a node in cell (I,J)
C KP = Previous value of K in the sequence of nodes
C in cell (I,J)
C R = Radius of influence for node K
C SW = Sum of weights W(K)
C SWC = Sum of weighted nodal function values at P
C SWCX,SWCY = Partial derivatives of SWC with respect to X
C and Y, respectively
C SWCXX,SWCXY,SWCYY = Second partial derivatives of SWC
C SWS = SW**2
C SWX,SWY = Partial derivatives of SW with respect to X
C and Y, respectively
C SWXX,SWXY,SWYY = Second partial derivatives of SW
C T1,T2,T3,T4 = Temporary variables
C W = Weight W(K) value at P: ((R-D)+/(R*D))**3,
C where (R-D)+ = 0 if R < D
C WX,WY = Partial derivatives of W with respect to X
C and Y, respectively
C WXX,WXY,WYY = Second partial derivatives of W
C XP,YP = Local copies of PX and PY -- coordinates of P
C
XP = PX
YP = PY
IF (N .LT. 10 .OR. NR .LT. 1 .OR. DX .LE. 0. .OR.
. DY .LE. 0. .OR. RMAX .LT. 0.) GO TO 6
C
C Set IMIN, IMAX, JMIN, and JMAX to cell indexes defining
C the range of the search for nodes whose radii include
C P. The cells which must be searched are those inter-
C sected by (or contained in) a circle of radius RMAX
C centered at P.
C
IMIN = INT((XP-XMIN-RMAX)/DX) + 1
IMAX = INT((XP-XMIN+RMAX)/DX) + 1
IF (IMIN .LT. 1) IMIN = 1
IF (IMAX .GT. NR) IMAX = NR
JMIN = INT((YP-YMIN-RMAX)/DY) + 1
JMAX = INT((YP-YMIN+RMAX)/DY) + 1
IF (JMIN .LT. 1) JMIN = 1
IF (JMAX .GT. NR) JMAX = NR
C
C The following is a test for no cells within the circle
C of radius RMAX.
C
IF (IMIN .GT. IMAX .OR. JMIN .GT. JMAX) GO TO 7
C
C C = SWC/SW = Sum(W(K)*C(K))/Sum(W(K)), where the sum is
C from K = 1 to N, C(K) is the cubic nodal function value,
C and W(K) = ((R-D)+/(R*D))**3 for radius R(K) and dist-
C ance D(K). Thus
C
C CX = (SWCX*SW - SWC*SWX)/SW**2 and
C CY = (SWCY*SW - SWC*SWY)/SW**2
C
C where SWCX and SWX are partial derivatives with respect
C to x of SWC and SW, respectively. SWCY and SWY are de-
C fined similarly. The second partials are
C
C CXX = ( SW*(SWCXX - 2*SWX*CX) - SWC*SWXX )/SW**2
C CXY = ( SW*(SWCXY-SWX*CY-SWY*CX) - SWC*SWXY )/SW**2
C CYY = ( SW*(SWCYY - 2*SWY*CY) - SWC*SWYY )/SW**2
C
C where SWCXX and SWXX are second partials with respect
C to x, SWCXY and SWXY are mixed partials, and SWCYY and
C SWYY are second partials with respect to y.
C
SW = 0.
SWX = 0.
SWY = 0.
SWXX = 0.
SWXY = 0.
SWYY = 0.
SWC = 0.
SWCX = 0.
SWCY = 0.
SWCXX = 0.
SWCXY = 0.
SWCYY = 0.
C
C Outer loop on cells (I,J).
C
DO 4 J = JMIN,JMAX
DO 3 I = IMIN,IMAX
K = LCELL(I,J)
IF (K .EQ. 0) GO TO 3
C
C Inner loop on nodes K.
C
1 DELX = XP - X(K)
DELY = YP - Y(K)
DXSQ = DELX*DELX
DYSQ = DELY*DELY
D = SQRT(DXSQ + DYSQ)
R = RW(K)
IF (D .GE. R) GO TO 2
IF (D .EQ. 0.) GO TO 5
T1 = (1.0/D - 1.0/R)
W = T1**3
T2 = -3.0*T1*T1/(D**3)
WX = DELX*T2
WY = DELY*T2
T1 = 3.0*T1*(2.0+3.0*D*T1)/(D**6)
WXX = T1*DXSQ + T2
WXY = T1*DELX*DELY
WYY = T1*DYSQ + T2
T1 = A(1,K)*DELX + A(2,K)*DELY + A(5,K)
T2 = T1 + T1 + A(1,K)*DELX
T3 = A(4,K)*DELY + A(3,K)*DELX + A(7,K)
T4 = T3 + T3 + A(4,K)*DELY
CK = (T1*DELX + A(6,K)*DELY + A(8,K))*DELX +
. (T3*DELY + A(9,K))*DELY + F(K)
CKX = T2*DELX + (A(3,K)*DELY+A(6,K))*DELY + A(8,K)
CKY = T4*DELY + (A(2,K)*DELX+A(6,K))*DELX + A(9,K)
CKXX = T2 + 3.0*A(1,K)*DELX
CKXY = 2.0*(A(2,K)*DELX + A(3,K)*DELY) + A(6,K)
CKYY = T4 + 3.0*A(4,K)*DELY
SW = SW + W
SWX = SWX + WX
SWY = SWY + WY
SWXX = SWXX + WXX
SWXY = SWXY + WXY
SWYY = SWYY + WYY
SWC = SWC + W*CK
SWCX = SWCX + WX*CK + W*CKX
SWCY = SWCY + WY*CK + W*CKY
SWCXX = SWCXX + W*CKXX + 2.0*WX*CKX + CK*WXX
SWCXY = SWCXY + W*CKXY + WX*CKY + WY*CKX + CK*WXY
SWCYY = SWCYY + W*CKYY + 2.0*WY*CKY + CK*WYY
C
C Bottom of loop on nodes in cell (I,J).
C
2 KP = K
K = LNEXT(KP)
IF (K .NE. KP) GO TO 1
3 CONTINUE
4 CONTINUE
C
C SW = 0 iff P is not within the radius R(K) for any node K.
C
IF (SW .EQ. 0.) GO TO 7
C = SWC/SW
SWS = SW*SW
CX = (SWCX*SW - SWC*SWX)/SWS
CY = (SWCY*SW - SWC*SWY)/SWS
CXX = (SW*(SWCXX-2.0*SWX*CX) - SWC*SWXX)/SWS
CXY = (SW*(SWCXY-SWY*CX-SWX*CY) - SWC*SWXY)/SWS
CYY = (SW*(SWCYY-2.0*SWY*CY) - SWC*SWYY)/SWS
IER = 0
RETURN
C
C (PX,PY) = (X(K),Y(K)).
C
5 C = F(K)
CX = A(8,K)
CY = A(9,K)
CXX = 2.0*A(5,K)
CXY = A(6,K)
CYY = 2.0*A(7,K)
IER = 0
RETURN
C
C Invalid input parameter.
C
6 IER = 1
RETURN
C
C No cells contain a point within RMAX of P, or
C SW = 0 and thus D .GE. RW(K) for all K.
C
7 C = 0.
CX = 0.
CY = 0.
CXX = 0.
CXY = 0.
CYY = 0.
IER = 2
RETURN
END
SUBROUTINE GETNP2 (PX,PY,X,Y,NR,LCELL,LNEXT,XMIN,YMIN,
. DX,DY, NP,DSQ)
INTEGER NR, LCELL(NR,NR), LNEXT(*), NP
DOUBLE PRECISION PX, PY, X(*), Y(*), XMIN, YMIN, DX,
. DY, DSQ
C
C***********************************************************
C
C From CSHEP2D
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 02/03/97
C
C Given a set of N nodes and the data structure defined in
C Subroutine STORE2, this subroutine uses the cell method to
C find the closest unmarked node NP to a specified point P.
C NP is then marked by setting LNEXT(NP) to -LNEXT(NP). (A
C node is marked if and only if the corresponding LNEXT ele-
C ment is negative. The absolute values of LNEXT elements,
C however, must be preserved.) Thus, the closest M nodes to
C P may be determined by a sequence of M calls to this rou-
C tine. Note that if the nearest neighbor to node K is to
C be determined (PX = X(K) and PY = Y(K)), then K should be
C marked before the call to this routine.
C
C The search is begun in the cell containing (or closest
C to) P and proceeds outward in rectangular layers until all
C cells which contain points within distance R of P have
C been searched, where R is the distance from P to the first
C unmarked node encountered (infinite if no unmarked nodes
C are present).
C
C This code is essentially unaltered from the subroutine
C of the same name in QSHEP2D.
C
C On input:
C
C PX,PY = Cartesian coordinates of the point P whose
C nearest unmarked neighbor is to be found.
C
C X,Y = Arrays of length N, for N .GE. 2, containing
C the Cartesian coordinates of the nodes.
C
C NR = Number of rows and columns in the cell grid.
C Refer to Subroutine STORE2. NR .GE. 1.
C
C LCELL = NR by NR array of nodal indexes associated
C with cells. Refer to Subroutine STORE2.
C
C LNEXT = Array of length N containing next-node
C indexes (or their negatives). Refer to
C Subroutine STORE2.
C
C XMIN,YMIN,DX,DY = Minimum nodal coordinates and cell
C dimensions. DX and DY must be
C positive. Refer to Subroutine
C STORE2.
C
C Input parameters other than LNEXT are not altered by
C this routine. With the exception of (PX,PY) and the signs
C of LNEXT elements, these parameters should be unaltered
C from their values on output from Subroutine STORE2.
C
C On output:
C
C NP = Index (for X and Y) of the nearest unmarked
C node to P, or 0 if all nodes are marked or NR
C .LT. 1 or DX .LE. 0 or DY .LE. 0. LNEXT(NP)
C .LT. 0 IF NP .NE. 0.
C
C DSQ = Squared Euclidean distance between P and node
C NP, or 0 if NP = 0.
C
C Modules required by GETNP2: None
C
C Intrinsic functions called by GETNP2: ABS, INT, SQRT
C
C***********************************************************
C
INTEGER I, I0, I1, I2, IMAX, IMIN, J, J0, J1, J2,
. JMAX, JMIN, L, LMIN, LN
LOGICAL FIRST
DOUBLE PRECISION DELX, DELY, R, RSMIN, RSQ, XP, YP
C
C Local parameters:
C
C DELX,DELY = PX-XMIN, PY-YMIN
C FIRST = Logical variable with value TRUE iff the
C first unmarked node has yet to be
C encountered
C I,J = Cell indexes in the range [I1,I2] X [J1,J2]
C I0,J0 = Indexes of the cell containing or closest
C to P
C I1,I2,J1,J2 = Range of cell indexes defining the layer
C whose intersection with the range
C [IMIN,IMAX] X [JMIN,JMAX] is currently
C being searched
C IMIN,IMAX = Cell row indexes defining the range of the
C search
C JMIN,JMAX = Cell column indexes defining the range of
C the search
C L,LN = Indexes of nodes in cell (I,J)
C LMIN = Current candidate for NP
C R = Distance from P to node LMIN
C RSMIN = Squared distance from P to node LMIN
C RSQ = Squared distance from P to node L
C XP,YP = Local copy of PX,PY -- coordinates of P
C
XP = PX
YP = PY
C
C Test for invalid input parameters.
C
IF (NR .LT. 1 .OR. DX .LE. 0. .OR. DY .LE. 0.)
. GO TO 9
C
C Initialize parameters.
C
FIRST = .TRUE.
IMIN = 1
IMAX = NR
JMIN = 1
JMAX = NR
DELX = XP - XMIN
DELY = YP - YMIN
I0 = INT(DELX/DX) + 1
IF (I0 .LT. 1) I0 = 1
IF (I0 .GT. NR) I0 = NR
J0 = INT(DELY/DY) + 1
IF (J0 .LT. 1) J0 = 1
IF (J0 .GT. NR) J0 = NR
I1 = I0
I2 = I0
J1 = J0
J2 = J0
C
C Outer loop on layers, inner loop on layer cells, excluding
C those outside the range [IMIN,IMAX] X [JMIN,JMAX].
C
1 DO 6 J = J1,J2
IF (J .GT. JMAX) GO TO 7
IF (J .LT. JMIN) GO TO 6
DO 5 I = I1,I2
IF (I .GT. IMAX) GO TO 6
IF (I .LT. IMIN) GO TO 5
IF (J .NE. J1 .AND. J .NE. J2 .AND. I .NE. I1
. .AND. I .NE. I2) GO TO 5
C
C Search cell (I,J) for unmarked nodes L.
C
L = LCELL(I,J)
IF (L .EQ. 0) GO TO 5
C
C Loop on nodes in cell (I,J).
C
2 LN = LNEXT(L)
IF (LN .LT. 0) GO TO 4
C
C Node L is not marked.
C
RSQ = (X(L)-XP)**2 + (Y(L)-YP)**2
IF (.NOT. FIRST) GO TO 3
C
C Node L is the first unmarked neighbor of P encountered.
C Initialize LMIN to the current candidate for NP, and
C RSMIN to the squared distance from P to LMIN. IMIN,
C IMAX, JMIN, and JMAX are updated to define the smal-
C lest rectangle containing a circle of radius R =
C Sqrt(RSMIN) centered at P, and contained in [1,NR] X
C [1,NR] (except that, if P is outside the rectangle
C defined by the nodes, it is possible that IMIN > NR,
C IMAX < 1, JMIN > NR, or JMAX < 1). FIRST is reset to
C FALSE.
C
LMIN = L
RSMIN = RSQ
R = SQRT(RSMIN)
IMIN = INT((DELX-R)/DX) + 1
IF (IMIN .LT. 1) IMIN = 1
IMAX = INT((DELX+R)/DX) + 1
IF (IMAX .GT. NR) IMAX = NR
JMIN = INT((DELY-R)/DY) + 1
IF (JMIN .LT. 1) JMIN = 1
JMAX = INT((DELY+R)/DY) + 1
IF (JMAX .GT. NR) JMAX = NR
FIRST = .FALSE.
GO TO 4
C
C Test for node L closer than LMIN to P.
C
3 IF (RSQ .GE. RSMIN) GO TO 4
C
C Update LMIN and RSMIN.
C
LMIN = L
RSMIN = RSQ
C
C Test for termination of loop on nodes in cell (I,J).
C
4 IF (ABS(LN) .EQ. L) GO TO 5
L = ABS(LN)
GO TO 2
5 CONTINUE
6 CONTINUE
C
C Test for termination of loop on cell layers.
C
7 IF (I1 .LE. IMIN .AND. I2 .GE. IMAX .AND.
. J1 .LE. JMIN .AND. J2 .GE. JMAX) GO TO 8
I1 = I1 - 1
I2 = I2 + 1
J1 = J1 - 1
J2 = J2 + 1
GO TO 1
C
C Unless no unmarked nodes were encountered, LMIN is the
C closest unmarked node to P.
C
8 IF (FIRST) GO TO 9
NP = LMIN
DSQ = RSMIN
LNEXT(LMIN) = -LNEXT(LMIN)
RETURN
C
C Error: NR, DX, or DY is invalid or all nodes are marked.
C
9 NP = 0
DSQ = 0.
RETURN
END
SUBROUTINE GIVENS ( A,B, C,S)
DOUBLE PRECISION A, B, C, S
C
C***********************************************************
C
C From SRFPACK
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 09/01/88
C
C This subroutine constructs the Givens plane rotation,
C
C ( C S)
C G = ( ) , where C*C + S*S = 1,
C (-S C)
C
C which zeros the second component of the vector (A,B)**T
C (transposed). Subroutine ROTATE may be called to apply
C the transformation to a 2 by N matrix.
C
C This routine is identical to subroutine SROTG from the
C LINPACK BLAS (Basic Linear Algebra Subroutines).
C
C On input:
C
C A,B = Components of the vector defining the rota-
C tion. These are overwritten by values R
C and Z (described below) which define C and S.
C
C On output:
C
C A = Signed Euclidean norm R of the input vector:
C R = +/-SQRT(A*A + B*B)
C
C B = Value Z such that:
C C = SQRT(1-Z*Z) and S=Z if ABS(Z) .LE. 1, and
C C = 1/Z and S = SQRT(1-C*C) if ABS(Z) > 1.
C
C C = +/-(A/R) or 1 if R = 0.
C
C S = +/-(B/R) or 0 if R = 0.
C
C Modules required by GIVENS: None
C
C Intrinsic functions called by GIVENS: ABS, SQRT
C
C***********************************************************
C
DOUBLE PRECISION AA, BB, R, U, V
C
C Local parameters:
C
C AA,BB = Local copies of A and B
C R = C*A + S*B = +/-SQRT(A*A+B*B)
C U,V = Variables used to scale A and B for computing R
C
AA = A
BB = B
IF (ABS(AA) .LE. ABS(BB)) GO TO 1
C
C ABS(A) > ABS(B).
C
U = AA + AA
V = BB/U
R = SQRT(.25 + V*V) * U
C = AA/R
S = V * (C + C)
C
C Note that R has the sign of A, C > 0, and S has
C SIGN(A)*SIGN(B).
C
B = S
A = R
RETURN
C
C ABS(A) .LE. ABS(B).
C
1 IF (BB .EQ. 0.) GO TO 2
U = BB + BB
V = AA/U
C
C Store R in A.
C
A = SQRT(.25 + V*V) * U
S = BB/A
C = V * (S + S)
C
C Note that R has the sign of B, S > 0, and C has
C SIGN(A)*SIGN(B).
C
B = 1.
IF (C .NE. 0.) B = 1./C
RETURN
C
C A = B = 0.
C
2 C = 1.
S = 0.
RETURN
END
SUBROUTINE ROTATE (N,C,S, X,Y )
INTEGER N
DOUBLE PRECISION C, S, X(N), Y(N)
C
C***********************************************************
C
C From SRFPACK
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 09/01/88
C
C ( C S)
C This subroutine applies the Givens rotation ( ) to
C (-S C)
C (X(1) ... X(N))
C the 2 by N matrix ( ) .
C (Y(1) ... Y(N))
C
C This routine is identical to subroutine SROT from the
C LINPACK BLAS (Basic Linear Algebra Subroutines).
C
C On input:
C
C N = Number of columns to be rotated.
C
C C,S = Elements of the Givens rotation. Refer to
C subroutine GIVENS.
C
C The above parameters are not altered by this routine.
C
C X,Y = Arrays of length .GE. N containing the compo-
C nents of the vectors to be rotated.
C
C On output:
C
C X,Y = Arrays containing the rotated vectors (not
C altered if N < 1).
C
C Modules required by ROTATE: None
C
C***********************************************************
C
INTEGER I
DOUBLE PRECISION XI, YI
C
DO 1 I = 1,N
XI = X(I)
YI = Y(I)
X(I) = C*XI + S*YI
Y(I) = -S*XI + C*YI
1 CONTINUE
RETURN
END
SUBROUTINE SETUP2 (XK,YK,ZK,XI,YI,ZI,S1,S2,S3,R, ROW)
DOUBLE PRECISION XK, YK, ZK, XI, YI, ZI, S1, S2, S3,
. R, ROW(10)
C
C***********************************************************
C
C From CSHEP2D
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 02/03/97
C
C This subroutine sets up the I-th row of an augmented re-
C gression matrix for a weighted least squares fit of a
C cubic function f(x,y) to a set of data values z, where
C f(XK,YK) = ZK. The first four columns (cubic terms) are
C scaled by S3, the next three columns (quadratic terms)
C are scaled by S2, and the eighth and ninth columns (lin-
C ear terms) are scaled by S1.
C
C On input:
C
C XK,YK = Coordinates of node K.
C
C ZK = Data value at node K to be interpolated by f.
C
C XI,YI,ZI = Coordinates and data value at node I.
C
C S1,S2,S3 = Scale factors.
C
C R = Radius of influence about node K defining the
C weight.
C
C The above parameters are not altered by this routine.
C
C ROW = Array of length 10.
C
C On output:
C
C ROW = Array containing a row of the augmented re-
C gression matrix.
C
C Modules required by SETUP2: None
C
C Intrinsic function called by SETUP2: SQRT
C
C***********************************************************
C
INTEGER I
DOUBLE PRECISION D, DX, DXSQ, DY, DYSQ, W, W1, W2, W3
C
C Local parameters:
C
C D = Distance between nodes K and I
C DX = XI - XK
C DXSQ = DX*DX
C DY = YI - YK
C DYSQ = DY*DY
C I = DO-loop index
C W = Weight associated with the row: (R-D)/(R*D)
C (0 if D = 0 or D > R)
C W1 = S1*W
C W2 = S2*W
C W3 = W3*W
C
DX = XI - XK
DY = YI - YK
DXSQ = DX*DX
DYSQ = DY*DY
D = SQRT(DXSQ + DYSQ)
IF (D .LE. 0. .OR. D .GE. R) GO TO 1
W = (R-D)/R/D
W1 = S1*W
W2 = S2*W
W3 = S3*W
ROW(1) = DXSQ*DX*W3
ROW(2) = DXSQ*DY*W3
ROW(3) = DX*DYSQ*W3
ROW(4) = DYSQ*DY*W3
ROW(5) = DXSQ*W2
ROW(6) = DX*DY*W2
ROW(7) = DYSQ*W2
ROW(8) = DX*W1
ROW(9) = DY*W1
ROW(10) = (ZI - ZK)*W
RETURN
C
C Nodes K and I coincide or node I is outside of the radius
C of influence. Set ROW to the zero vector.
C
1 DO 2 I = 1,10
ROW(I) = 0.
2 CONTINUE
RETURN
END
SUBROUTINE STORE2 (N,X,Y,NR, LCELL,LNEXT,XMIN,YMIN,DX,
. DY,IER)
INTEGER N, NR, LCELL(NR,NR), LNEXT(N), IER
DOUBLE PRECISION X(N), Y(N), XMIN, YMIN, DX, DY
C
C***********************************************************
C
C From CSHEP2D
C Robert J. Renka
C Dept. of Computer Science
C Univ. of North Texas
C renka@cs.unt.edu
C 03/28/97
C
C Given a set of N arbitrarily distributed nodes in the
C plane, this subroutine creates a data structure for a
C cell-based method of solving closest-point problems. The
C smallest rectangle containing the nodes is partitioned
C into an NR by NR uniform grid of cells, and nodes are as-
C sociated with cells. In particular, the data structure
C stores the indexes of the nodes contained in each cell.
C For a uniform random distribution of nodes, the nearest
C node to an arbitrary point can be determined in constant
C expected time.
C
C This code is essentially unaltered from the subroutine
C of the same name in QSHEP2D.
C
C On input:
C
C N = Number of nodes. N .GE. 2.
C
C X,Y = Arrays of length N containing the Cartesian
C coordinates of the nodes.
C
C NR = Number of rows and columns in the grid. The
C cell density (average number of nodes per cell)
C is D = N/(NR**2). A recommended value, based
C on empirical evidence, is D = 3 -- NR =
C Sqrt(N/3). NR .GE. 1.
C
C The above parameters are not altered by this routine.
C
C LCELL = Array of length .GE. NR**2.
C
C LNEXT = Array of length .GE. N.
C
C On output:
C
C LCELL = NR by NR cell array such that LCELL(I,J)
C contains the index (for X and Y) of the
C first node (node with smallest index) in
C cell (I,J), or LCELL(I,J) = 0 if no nodes
C are contained in the cell. The upper right
C corner of cell (I,J) has coordinates (XMIN+
C I*DX,YMIN+J*DY). LCELL is not defined if
C IER .NE. 0.
C
C LNEXT = Array of next-node indexes such that
C LNEXT(K) contains the index of the next node
C in the cell which contains node K, or
C LNEXT(K) = K if K is the last node in the
C cell for K = 1,...,N. (The nodes contained
C in a cell are ordered by their indexes.)
C If, for example, cell (I,J) contains nodes
C 2, 3, and 5 (and no others), then LCELL(I,J)
C = 2, LNEXT(2) = 3, LNEXT(3) = 5, and
C LNEXT(5) = 5. LNEXT is not defined if
C IER .NE. 0.
C
C XMIN,YMIN = Cartesian coordinates of the lower left
C corner of the rectangle defined by the
C nodes (smallest nodal coordinates) un-
C less IER = 1. The upper right corner is
C (XMAX,YMAX) for XMAX = XMIN + NR*DX and
C YMAX = YMIN + NR*DY.
C
C DX,DY = Dimensions of the cells unless IER = 1. DX
C = (XMAX-XMIN)/NR and DY = (YMAX-YMIN)/NR,
C where XMIN, XMAX, YMIN, and YMAX are the
C extrema of X and Y.
C
C IER = Error indicator:
C IER = 0 if no errors were encountered.
C IER = 1 if N < 2 or NR < 1.
C IER = 2 if DX = 0 or DY = 0.
C
C Modules required by STORE2: None
C
C Intrinsic functions called by STORE2: DBLE, INT
C
C***********************************************************
C
INTEGER I, J, K, L, NN, NNR
DOUBLE PRECISION DELX, DELY, XMN, XMX, YMN, YMX
C
C Local parameters:
C
C DELX,DELY = Components of the cell dimensions -- local
C copies of DX,DY
C I,J = Cell indexes
C K = Nodal index
C L = Index of a node in cell (I,J)
C NN = Local copy of N
C NNR = Local copy of NR
C XMN,XMX = Range of nodal X coordinates
C YMN,YMX = Range of nodal Y coordinates
C
NN = N
NNR = NR
IF (NN .LT. 2 .OR. NNR .LT. 1) GO TO 5
C
C Compute the dimensions of the rectangle containing the
C nodes.
C
XMN = X(1)
XMX = XMN
YMN = Y(1)
YMX = YMN
DO 1 K = 2,NN
IF (X(K) .LT. XMN) XMN = X(K)
IF (X(K) .GT. XMX) XMX = X(K)
IF (Y(K) .LT. YMN) YMN = Y(K)
IF (Y(K) .GT. YMX) YMX = Y(K)
1 CONTINUE
XMIN = XMN
YMIN = YMN
C
C Compute cell dimensions and test for zero area.
C
DELX = (XMX-XMN)/DBLE(NNR)
DELY = (YMX-YMN)/DBLE(NNR)
DX = DELX
DY = DELY
IF (DELX .EQ. 0. .OR. DELY .EQ. 0.) GO TO 6
C
C Initialize LCELL.
C
DO 3 J = 1,NNR
DO 2 I = 1,NNR
LCELL(I,J) = 0
2 CONTINUE
3 CONTINUE
C
C Loop on nodes, storing indexes in LCELL and LNEXT.
C
DO 4 K = NN,1,-1
I = INT((X(K)-XMN)/DELX) + 1
IF (I .GT. NNR) I = NNR
J = INT((Y(K)-YMN)/DELY) + 1
IF (J .GT. NNR) J = NNR
L = LCELL(I,J)
LNEXT(K) = L
IF (L .EQ. 0) LNEXT(K) = K
LCELL(I,J) = K
4 CONTINUE
C
C No errors encountered.
C
IER = 0
RETURN
C
C Invalid input parameter.
C
5 IER = 1
RETURN
C
C DX = 0 or DY = 0.
C
6 IER = 2
RETURN
END
|