1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
*DECK DBESI
SUBROUTINE DBESI (X, ALPHA, KODE, N, Y, NZ,ierr)
C***BEGIN PROLOGUE DBESI
C***PURPOSE Compute an N member sequence of I Bessel functions
C I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
C EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for nonnegative
C ALPHA and X.
C***LIBRARY SLATEC
C***CATEGORY C10B3
C***TYPE DOUBLE PRECISION (BESI-S, DBESI-D)
C***KEYWORDS I BESSEL FUNCTION, SPECIAL FUNCTIONS
C***AUTHOR Amos, D. E., (SNLA)
C Daniel, S. L., (SNLA)
C***DESCRIPTION
C
C Abstract **** a double precision routine ****
C DBESI computes an N member sequence of I Bessel functions
C I/sub(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
C EXP(-X)*I/sub(ALPHA+K-1)/(X), K=1,...,N for nonnegative ALPHA
C and X. A combination of the power series, the asymptotic
C expansion for X to infinity, and the uniform asymptotic
C expansion for NU to infinity are applied over subdivisions of
C the (NU,X) plane. For values not covered by one of these
C formulae, the order is incremented by an integer so that one
C of these formulae apply. Backward recursion is used to reduce
C orders by integer values. The asymptotic expansion for X to
C infinity is used only when the entire sequence (specifically
C the last member) lies within the region covered by the
C expansion. Leading terms of these expansions are used to test
C for over or underflow where appropriate. If a sequence is
C requested and the last member would underflow, the result is
C set to zero and the next lower order tried, etc., until a
C member comes on scale or all are set to zero. An overflow
C cannot occur with scaling.
C
C The maximum number of significant digits obtainable
C is the smaller of 14 and the number of digits carried in
C double precision arithmetic.
C
C Description of Arguments
C
C Input X,ALPHA are double precision
C X - X .GE. 0.0D0
C ALPHA - order of first member of the sequence,
C ALPHA .GE. 0.0D0
C KODE - a parameter to indicate the scaling option
C KODE=1 returns
C Y(K)= I/sub(ALPHA+K-1)/(X),
C K=1,...,N
C KODE=2 returns
C Y(K)=EXP(-X)*I/sub(ALPHA+K-1)/(X),
C K=1,...,N
C N - number of members in the sequence, N .GE. 1
C
C Output Y is double precision
C Y - a vector whose first N components contain
C values for I/sub(ALPHA+K-1)/(X) or scaled
C values for EXP(-X)*I/sub(ALPHA+K-1)/(X),
C K=1,...,N depending on KODE
C NZ - number of components of Y set to zero due to
C underflow,
C NZ=0 , normal return, computation completed
C NZ .NE. 0, last NZ components of Y set to zero,
C Y(K)=0.0D0, K=N-NZ+1,...,N.
C
C Error Conditions
C Improper input arguments - a fatal error
C Overflow with KODE=1 - a fatal error
C Underflow - a non-fatal error(NZ .NE. 0)
C
C***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
C subroutines IBESS and JBESS for Bessel functions
C I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
C Transactions on Mathematical Software 3, (1977),
C pp. 76-92.
C F. W. J. Olver, Tables of Bessel Functions of Moderate
C or Large Orders, NPL Mathematical Tables 6, Her
C Majesty's Stationery Office, London, 1962.
C***ROUTINES CALLED D1MACH, DASYIK, DLNGAM, I1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 750101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 890911 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DBESI
C
INTEGER I, IALP, IN, INLIM, IS, I1, K, KK, KM, KODE, KT,
1 N, NN, NS, NZ
INTEGER I1MACH
DOUBLE PRECISION AIN,AK,AKM,ALPHA,ANS,AP,ARG,ATOL,TOLLN,DFN,
1 DTM, DX, EARG, ELIM, ETX, FLGIK,FN, FNF, FNI,FNP1,FNU,GLN,RA,
2 RTTPI, S, SX, SXO2, S1, S2, T, TA, TB, TEMP, TFN, TM, TOL,
3 TRX, T2, X, XO2, XO2L, Y, Z
DOUBLE PRECISION D1MACH, DLNGAM
DIMENSION Y(*), TEMP(3)
SAVE RTTPI, INLIM
DATA RTTPI / 3.98942280401433D-01/
DATA INLIM / 80 /
C***FIRST EXECUTABLE STATEMENT DBESI
ierr=0
NZ = 0
KT = 1
C I1MACH(15) REPLACES I1MACH(12) IN A DOUBLE PRECISION CODE
C I1MACH(14) REPLACES I1MACH(11) IN A DOUBLE PRECISION CODE
RA = D1MACH(3)
TOL = MAX(RA,1.0D-15)
I1 = -I1MACH(15)
GLN = D1MACH(5)
ELIM = 2.303D0*(I1*GLN-3.0D0)
C TOLLN = -LN(TOL)
I1 = I1MACH(14)+1
TOLLN = 2.303D0*GLN*I1
TOLLN = MIN(TOLLN,34.5388D0)
IF (N-1) 590, 10, 20
10 KT = 2
20 NN = N
IF (KODE.LT.1 .OR. KODE.GT.2) GO TO 570
IF (X) 600, 30, 80
30 IF (ALPHA) 580, 40, 50
40 Y(1) = 1.0D0
IF (N.EQ.1) RETURN
I1 = 2
GO TO 60
50 I1 = 1
60 DO 70 I=I1,N
Y(I) = 0.0D0
70 CONTINUE
RETURN
80 CONTINUE
IF (ALPHA.LT.0.0D0) GO TO 580
C
IALP = INT(ALPHA)
FNI = IALP + N - 1
FNF = ALPHA - IALP
DFN = FNI + FNF
FNU = DFN
IN = 0
XO2 = X*0.5D0
SXO2 = XO2*XO2
ETX = KODE - 1
SX = ETX*X
C
C DECISION TREE FOR REGION WHERE SERIES, ASYMPTOTIC EXPANSION FOR X
C TO INFINITY AND ASYMPTOTIC EXPANSION FOR NU TO INFINITY ARE
C APPLIED.
C
IF (SXO2.LE.(FNU+1.0D0)) GO TO 90
IF (X.LE.12.0D0) GO TO 110
FN = 0.55D0*FNU*FNU
FN = MAX(17.0D0,FN)
IF (X.GE.FN) GO TO 430
ANS = MAX(36.0D0-FNU,0.0D0)
NS = INT(ANS)
FNI = FNI + NS
DFN = FNI + FNF
FN = DFN
IS = KT
KM = N - 1 + NS
IF (KM.GT.0) IS = 3
GO TO 120
90 FN = FNU
FNP1 = FN + 1.0D0
XO2L = LOG(XO2)
IS = KT
IF (X.LE.0.5D0) GO TO 230
NS = 0
100 FNI = FNI + NS
DFN = FNI + FNF
FN = DFN
FNP1 = FN + 1.0D0
IS = KT
IF (N-1+NS.GT.0) IS = 3
GO TO 230
110 XO2L = LOG(XO2)
NS = INT(SXO2-FNU)
GO TO 100
120 CONTINUE
C
C OVERFLOW TEST ON UNIFORM ASYMPTOTIC EXPANSION
C
IF (KODE.EQ.2) GO TO 130
IF (ALPHA.LT.1.0D0) GO TO 150
Z = X/ALPHA
RA = SQRT(1.0D0+Z*Z)
GLN = LOG((1.0D0+RA)/Z)
T = RA*(1.0D0-ETX) + ETX/(Z+RA)
ARG = ALPHA*(T-GLN)
IF (ARG.GT.ELIM) GO TO 610
IF (KM.EQ.0) GO TO 140
130 CONTINUE
C
C UNDERFLOW TEST ON UNIFORM ASYMPTOTIC EXPANSION
C
Z = X/FN
RA = SQRT(1.0D0+Z*Z)
GLN = LOG((1.0D0+RA)/Z)
T = RA*(1.0D0-ETX) + ETX/(Z+RA)
ARG = FN*(T-GLN)
140 IF (ARG.LT.(-ELIM)) GO TO 280
GO TO 190
150 IF (X.GT.ELIM) GO TO 610
GO TO 130
C
C UNIFORM ASYMPTOTIC EXPANSION FOR NU TO INFINITY
C
160 IF (KM.NE.0) GO TO 170
Y(1) = TEMP(3)
RETURN
170 TEMP(1) = TEMP(3)
IN = NS
KT = 1
I1 = 0
180 CONTINUE
IS = 2
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
IF(I1.EQ.2) GO TO 350
Z = X/FN
RA = SQRT(1.0D0+Z*Z)
GLN = LOG((1.0D0+RA)/Z)
T = RA*(1.0D0-ETX) + ETX/(Z+RA)
ARG = FN*(T-GLN)
190 CONTINUE
I1 = ABS(3-IS)
I1 = MAX(I1,1)
FLGIK = 1.0D0
CALL DASYIK(X,FN,KODE,FLGIK,RA,ARG,I1,TEMP(IS))
GO TO (180, 350, 510), IS
C
C SERIES FOR (X/2)**2.LE.NU+1
C
230 CONTINUE
GLN = DLNGAM(FNP1)
ARG = FN*XO2L - GLN - SX
IF (ARG.LT.(-ELIM)) GO TO 300
EARG = EXP(ARG)
240 CONTINUE
S = 1.0D0
IF (X.LT.TOL) GO TO 260
AK = 3.0D0
T2 = 1.0D0
T = 1.0D0
S1 = FN
DO 250 K=1,17
S2 = T2 + S1
T = T*SXO2/S2
S = S + T
IF (ABS(T).LT.TOL) GO TO 260
T2 = T2 + AK
AK = AK + 2.0D0
S1 = S1 + FN
250 CONTINUE
260 CONTINUE
TEMP(IS) = S*EARG
GO TO (270, 350, 500), IS
270 EARG = EARG*FN/XO2
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
IS = 2
GO TO 240
C
C SET UNDERFLOW VALUE AND UPDATE PARAMETERS
C
280 Y(NN) = 0.0D0
NN = NN - 1
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
IF (NN-1) 340, 290, 130
290 KT = 2
IS = 2
GO TO 130
300 Y(NN) = 0.0D0
NN = NN - 1
FNP1 = FN
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
IF (NN-1) 340, 310, 320
310 KT = 2
IS = 2
320 IF (SXO2.LE.FNP1) GO TO 330
GO TO 130
330 ARG = ARG - XO2L + LOG(FNP1)
IF (ARG.LT.(-ELIM)) GO TO 300
GO TO 230
340 NZ = N - NN
RETURN
C
C BACKWARD RECURSION SECTION
C
350 CONTINUE
NZ = N - NN
360 CONTINUE
IF(KT.EQ.2) GO TO 420
S1 = TEMP(1)
S2 = TEMP(2)
TRX = 2.0D0/X
DTM = FNI
TM = (DTM+FNF)*TRX
IF (IN.EQ.0) GO TO 390
C BACKWARD RECUR TO INDEX ALPHA+NN-1
DO 380 I=1,IN
S = S2
S2 = TM*S2 + S1
S1 = S
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
380 CONTINUE
Y(NN) = S1
IF (NN.EQ.1) RETURN
Y(NN-1) = S2
IF (NN.EQ.2) RETURN
GO TO 400
390 CONTINUE
C BACKWARD RECUR FROM INDEX ALPHA+NN-1 TO ALPHA
Y(NN) = S1
Y(NN-1) = S2
IF (NN.EQ.2) RETURN
400 K = NN + 1
DO 410 I=3,NN
K = K - 1
Y(K-2) = TM*Y(K-1) + Y(K)
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
410 CONTINUE
RETURN
420 Y(1) = TEMP(2)
RETURN
C
C ASYMPTOTIC EXPANSION FOR X TO INFINITY
C
430 CONTINUE
EARG = RTTPI/SQRT(X)
IF (KODE.EQ.2) GO TO 440
IF (X.GT.ELIM) GO TO 610
EARG = EARG*EXP(X)
440 ETX = 8.0D0*X
IS = KT
IN = 0
FN = FNU
450 DX = FNI + FNI
TM = 0.0D0
IF (FNI.EQ.0.0D0 .AND. ABS(FNF).LT.TOL) GO TO 460
TM = 4.0D0*FNF*(FNI+FNI+FNF)
460 CONTINUE
DTM = DX*DX
S1 = ETX
TRX = DTM - 1.0D0
DX = -(TRX+TM)/ETX
T = DX
S = 1.0D0 + DX
ATOL = TOL*ABS(S)
S2 = 1.0D0
AK = 8.0D0
DO 470 K=1,25
S1 = S1 + ETX
S2 = S2 + AK
DX = DTM - S2
AP = DX + TM
T = -T*AP/S1
S = S + T
IF (ABS(T).LE.ATOL) GO TO 480
AK = AK + 8.0D0
470 CONTINUE
480 TEMP(IS) = S*EARG
IF(IS.EQ.2) GO TO 360
IS = 2
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
GO TO 450
C
C BACKWARD RECURSION WITH NORMALIZATION BY
C ASYMPTOTIC EXPANSION FOR NU TO INFINITY OR POWER SERIES.
C
500 CONTINUE
C COMPUTATION OF LAST ORDER FOR SERIES NORMALIZATION
AKM = MAX(3.0D0-FN,0.0D0)
KM = INT(AKM)
TFN = FN + KM
TA = (GLN+TFN-0.9189385332D0-0.0833333333D0/TFN)/(TFN+0.5D0)
TA = XO2L - TA
TB = -(1.0D0-1.0D0/TFN)/TFN
AIN = TOLLN/(-TA+SQRT(TA*TA-TOLLN*TB)) + 1.5D0
IN = INT(AIN)
IN = IN + KM
GO TO 520
510 CONTINUE
C COMPUTATION OF LAST ORDER FOR ASYMPTOTIC EXPANSION NORMALIZATION
T = 1.0D0/(FN*RA)
AIN = TOLLN/(GLN+SQRT(GLN*GLN+T*TOLLN)) + 1.5D0
IN = INT(AIN)
IF (IN.GT.INLIM) GO TO 160
520 CONTINUE
TRX = 2.0D0/X
DTM = FNI + IN
TM = (DTM+FNF)*TRX
TA = 0.0D0
TB = TOL
KK = 1
530 CONTINUE
C
C BACKWARD RECUR UNINDEXED
C
DO 540 I=1,IN
S = TB
TB = TM*TB + TA
TA = S
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
540 CONTINUE
C NORMALIZATION
IF (KK.NE.1) GO TO 550
TA = (TA/TB)*TEMP(3)
TB = TEMP(3)
KK = 2
IN = NS
IF (NS.NE.0) GO TO 530
550 Y(NN) = TB
NZ = N - NN
IF (NN.EQ.1) RETURN
TB = TM*TB + TA
K = NN - 1
Y(K) = TB
IF (NN.EQ.2) RETURN
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
KM = K - 1
C
C BACKWARD RECUR INDEXED
C
DO 560 I=1,KM
Y(K-1) = TM*Y(K) + Y(K+1)
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
K = K - 1
560 CONTINUE
RETURN
C
C
C
570 CONTINUE
C CALL XERMSG ('SLATEC', 'DBESI',
C + 'SCALING OPTION, KODE, NOT 1 OR 2.', 2, 1)
ierr=1
RETURN
580 CONTINUE
C CALL XERMSG ('SLATEC', 'DBESI', 'ORDER, ALPHA, LESS THAN ZERO.',
C + 2, 1)
ierr=1
RETURN
590 CONTINUE
C CALL XERMSG ('SLATEC', 'DBESI', 'N LESS THAN ONE.', 2, 1)
ierr=1
RETURN
600 CONTINUE
C CALL XERMSG ('SLATEC', 'DBESI', 'X LESS THAN ZERO.', 2, 1)
ierr=1
RETURN
610 CONTINUE
C CALL XERMSG ('SLATEC', 'DBESI',
C + 'OVERFLOW, X TOO LARGE FOR KODE = 1.', 6, 1)
ierr=2
RETURN
END
|