File: dbesj.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (512 lines) | stat: -rw-r--r-- 14,048 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
*DECK DBESJ
      SUBROUTINE DBESJ (X, ALPHA, N, Y, NZ,ierr)
C***BEGIN PROLOGUE  DBESJ
C***PURPOSE  Compute an N member sequence of J Bessel functions
C            J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
C            and X.
C***LIBRARY   SLATEC
C***CATEGORY  C10A3
C***TYPE      DOUBLE PRECISION (BESJ-S, DBESJ-D)
C***KEYWORDS  J BESSEL FUNCTION, SPECIAL FUNCTIONS
C***AUTHOR  Amos, D. E., (SNLA)
C           Daniel, S. L., (SNLA)
C           Weston, M. K., (SNLA)
C***DESCRIPTION
C
C     Abstract  **** a double precision routine ****
C         DBESJ computes an N member sequence of J Bessel functions
C         J/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA and X.
C         A combination of the power series, the asymptotic expansion
C         for X to infinity and the uniform asymptotic expansion for
C         NU to infinity are applied over subdivisions of the (NU,X)
C         plane.  For values of (NU,X) not covered by one of these
C         formulae, the order is incremented or decremented by integer
C         values into a region where one of the formulae apply. Backward
C         recursion is applied to reduce orders by integer values except
C         where the entire sequence lies in the oscillatory region.  In
C         this case forward recursion is stable and values from the
C         asymptotic expansion for X to infinity start the recursion
C         when it is efficient to do so. Leading terms of the series and
C         uniform expansion are tested for underflow.  If a sequence is
C         requested and the last member would underflow, the result is
C         set to zero and the next lower order tried, etc., until a
C         member comes on scale or all members are set to zero.
C         Overflow cannot occur.
C
C         The maximum number of significant digits obtainable
C         is the smaller of 14 and the number of digits carried in
C         double precision arithmetic.
C
C     Description of Arguments
C
C         Input      X,ALPHA are double precision
C           X      - X .GE. 0.0D0
C           ALPHA  - order of first member of the sequence,
C                    ALPHA .GE. 0.0D0
C           N      - number of members in the sequence, N .GE. 1
C
C         Output     Y is double precision
C           Y      - a vector whose first N components contain
C                    values for J/sub(ALPHA+K-1)/(X), K=1,...,N
C           NZ     - number of components of Y set to zero due to
C                    underflow,
C                    NZ=0   , normal return, computation completed
C                    NZ .NE. 0, last NZ components of Y set to zero,
C                             Y(K)=0.0D0, K=N-NZ+1,...,N.
C
C     Error Conditions
C         Improper input arguments - a fatal error
C         Underflow  - a non-fatal error (NZ .NE. 0)
C
C***REFERENCES  D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
C                 subroutines IBESS and JBESS for Bessel functions
C                 I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
C                 Transactions on Mathematical Software 3, (1977),
C                 pp. 76-92.
C               F. W. J. Olver, Tables of Bessel Functions of Moderate
C                 or Large Orders, NPL Mathematical Tables 6, Her
C                 Majesty's Stationery Office, London, 1962.
C***ROUTINES CALLED  D1MACH, DASYJY, DJAIRY, DLNGAM, I1MACH, XERMSG
C***REVISION HISTORY  (YYMMDD)
C   750101  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890911  Removed unnecessary intrinsics.  (WRB)
C   890911  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
C   900326  Removed duplicate information from DESCRIPTION section.
C           (WRB)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  DBESJ
      EXTERNAL DJAIRY
      INTEGER I,IALP,IDALP,IFLW,IN,INLIM,IS,I1,I2,K,KK,KM,KT,N,NN,
     1        NS,NZ
      INTEGER I1MACH
      DOUBLE PRECISION AK,AKM,ALPHA,ANS,AP,ARG,COEF,DALPHA,DFN,DTM,
     1           EARG,ELIM1,ETX,FIDAL,FLGJY,FN,FNF,FNI,FNP1,FNU,
     2           FNULIM,GLN,PDF,PIDT,PP,RDEN,RELB,RTTP,RTWO,RTX,RZDEN,
     3           S,SA,SB,SXO2,S1,S2,T,TA,TAU,TB,TEMP,TFN,TM,TOL,
     4           TOLLN,TRX,TX,T1,T2,WK,X,XO2,XO2L,Y,SLIM,RTOL
      SAVE RTWO, PDF, RTTP, PIDT, PP, INLIM, FNULIM
      DOUBLE PRECISION D1MACH, DLNGAM
      DIMENSION Y(*), TEMP(3), FNULIM(2), PP(4), WK(7)
      DATA RTWO,PDF,RTTP,PIDT                    / 1.34839972492648D+00,
     1 7.85398163397448D-01, 7.97884560802865D-01, 1.57079632679490D+00/
      DATA  PP(1),  PP(2),  PP(3),  PP(4)        / 8.72909153935547D+00,
     1 2.65693932265030D-01, 1.24578576865586D-01, 7.70133747430388D-04/
      DATA INLIM           /      150            /
      DATA FNULIM(1), FNULIM(2) /      100.0D0,     60.0D0     /
C***FIRST EXECUTABLE STATEMENT  DBESJ
      ierr=0
      NZ = 0
      KT = 1
      NS=0
C     I1MACH(14) REPLACES I1MACH(11) IN A DOUBLE PRECISION CODE
C     I1MACH(15) REPLACES I1MACH(12) IN A DOUBLE PRECISION CODE
      TA = D1MACH(3)
      TOL = MAX(TA,1.0D-15)
      I1 = I1MACH(14) + 1
      I2 = I1MACH(15)
      TB = D1MACH(5)
      ELIM1 = -2.303D0*(I2*TB+3.0D0)
      RTOL=1.0D0/TOL
      SLIM=D1MACH(1)*RTOL*1.0D+3
C     TOLLN = -LN(TOL)
      TOLLN = 2.303D0*TB*I1
      TOLLN = MIN(TOLLN,34.5388D0)
      IF (N-1) 720, 10, 20
   10 KT = 2
   20 NN = N
      IF (X) 730, 30, 80
   30 IF (ALPHA) 710, 40, 50
   40 Y(1) = 1.0D0
      IF (N.EQ.1) RETURN
      I1 = 2
      GO TO 60
   50 I1 = 1
   60 DO 70 I=I1,N
        Y(I) = 0.0D0
   70 CONTINUE
      RETURN
   80 CONTINUE
      IF (ALPHA.LT.0.0D0) GO TO 710
C
      IALP = INT(ALPHA)
      FNI = IALP + N - 1
      FNF = ALPHA - IALP
      DFN = FNI + FNF
      FNU = DFN
      XO2 = X*0.5D0
      SXO2 = XO2*XO2
C
C     DECISION TREE FOR REGION WHERE SERIES, ASYMPTOTIC EXPANSION FOR X
C     TO INFINITY AND ASYMPTOTIC EXPANSION FOR NU TO INFINITY ARE
C     APPLIED.
C
      IF (SXO2.LE.(FNU+1.0D0)) GO TO 90
      TA = MAX(20.0D0,FNU)
      IF (X.GT.TA) GO TO 120
      IF (X.GT.12.0D0) GO TO 110
      XO2L = LOG(XO2)
      NS = INT(SXO2-FNU) + 1
      GO TO 100
   90 FN = FNU
      FNP1 = FN + 1.0D0
      XO2L = LOG(XO2)
      IS = KT
      IF (X.LE.0.50D0) GO TO 330
      NS = 0
  100 FNI = FNI + NS
      DFN = FNI + FNF
      FN = DFN
      FNP1 = FN + 1.0D0
      IS = KT
      IF (N-1+NS.GT.0) IS = 3
      GO TO 330
  110 ANS = MAX(36.0D0-FNU,0.0D0)
      NS = INT(ANS)
      FNI = FNI + NS
      DFN = FNI + FNF
      FN = DFN
      IS = KT
      IF (N-1+NS.GT.0) IS = 3
      GO TO 130
  120 CONTINUE
      RTX = SQRT(X)
      TAU = RTWO*RTX
      TA = TAU + FNULIM(KT)
      IF (FNU.LE.TA) GO TO 480
      FN = FNU
      IS = KT
C
C     UNIFORM ASYMPTOTIC EXPANSION FOR NU TO INFINITY
C
  130 CONTINUE
      I1 = ABS(3-IS)
      I1 = MAX(I1,1)
      FLGJY = 1.0D0
      CALL DASYJY(DJAIRY,X,FN,FLGJY,I1,TEMP(IS),WK,IFLW)
      IF(IFLW.NE.0) GO TO 380
      GO TO (320, 450, 620), IS
  310 TEMP(1) = TEMP(3)
      KT = 1
  320 IS = 2
      FNI = FNI - 1.0D0
      DFN = FNI + FNF
      FN = DFN
      IF(I1.EQ.2) GO TO 450
      GO TO 130
C
C     SERIES FOR (X/2)**2.LE.NU+1
C
  330 CONTINUE
      GLN = DLNGAM(FNP1)
      ARG = FN*XO2L - GLN
      IF (ARG.LT.(-ELIM1)) GO TO 400
      EARG = EXP(ARG)
  340 CONTINUE
      S = 1.0D0
      IF (X.LT.TOL) GO TO 360
      AK = 3.0D0
      T2 = 1.0D0
      T = 1.0D0
      S1 = FN
      DO 350 K=1,17
        S2 = T2 + S1
        T = -T*SXO2/S2
        S = S + T
        IF (ABS(T).LT.TOL) GO TO 360
        T2 = T2 + AK
        AK = AK + 2.0D0
        S1 = S1 + FN
  350 CONTINUE
  360 CONTINUE
      TEMP(IS) = S*EARG
      GO TO (370, 450, 610), IS
  370 EARG = EARG*FN/XO2
      FNI = FNI - 1.0D0
      DFN = FNI + FNF
      FN = DFN
      IS = 2
      GO TO 340
C
C     SET UNDERFLOW VALUE AND UPDATE PARAMETERS
C     UNDERFLOW CAN ONLY OCCUR FOR NS=0 SINCE THE ORDER MUST BE LARGER
C     THAN 36. THEREFORE, NS NEE NOT BE TESTED.
C
  380 Y(NN) = 0.0D0
      NN = NN - 1
      FNI = FNI - 1.0D0
      DFN = FNI + FNF
      FN = DFN
      IF (NN-1) 440, 390, 130
  390 KT = 2
      IS = 2
      GO TO 130
  400 Y(NN) = 0.0D0
      NN = NN - 1
      FNP1 = FN
      FNI = FNI - 1.0D0
      DFN = FNI + FNF
      FN = DFN
      IF (NN-1) 440, 410, 420
  410 KT = 2
      IS = 2
  420 IF (SXO2.LE.FNP1) GO TO 430
      GO TO 130
  430 ARG = ARG - XO2L + LOG(FNP1)
      IF (ARG.LT.(-ELIM1)) GO TO 400
      GO TO 330
  440 NZ = N - NN
      RETURN
C
C     BACKWARD RECURSION SECTION
C
  450 CONTINUE
      IF(NS.NE.0) GO TO 451
      NZ = N - NN
      IF (KT.EQ.2) GO TO 470
C     BACKWARD RECUR FROM INDEX ALPHA+NN-1 TO ALPHA
      Y(NN) = TEMP(1)
      Y(NN-1) = TEMP(2)
      IF (NN.EQ.2) RETURN
  451 CONTINUE
      TRX = 2.0D0/X
      DTM = FNI
      TM = (DTM+FNF)*TRX
      AK=1.0D0
      TA=TEMP(1)
      TB=TEMP(2)
      IF(ABS(TA).GT.SLIM) GO TO 455
      TA=TA*RTOL
      TB=TB*RTOL
      AK=TOL
  455 CONTINUE
      KK=2
      IN=NS-1
      IF(IN.EQ.0) GO TO 690
      IF(NS.NE.0) GO TO 670
      K=NN-2
      DO 460 I=3,NN
        S=TB
        TB = TM*TB - TA
        TA=S
        Y(K)=TB*AK
        DTM = DTM - 1.0D0
        TM = (DTM+FNF)*TRX
        K = K - 1
  460 CONTINUE
      RETURN
  470 Y(1) = TEMP(2)
      RETURN
C
C     ASYMPTOTIC EXPANSION FOR X TO INFINITY WITH FORWARD RECURSION IN
C     OSCILLATORY REGION X.GT.MAX(20, NU), PROVIDED THE LAST MEMBER
C     OF THE SEQUENCE IS ALSO IN THE REGION.
C
  480 CONTINUE
      IN = INT(ALPHA-TAU+2.0D0)
      IF (IN.LE.0) GO TO 490
      IDALP = IALP - IN - 1
      KT = 1
      GO TO 500
  490 CONTINUE
      IDALP = IALP
      IN = 0
  500 IS = KT
      FIDAL = IDALP
      DALPHA = FIDAL + FNF
      ARG = X - PIDT*DALPHA - PDF
      SA = SIN(ARG)
      SB = COS(ARG)
      COEF = RTTP/RTX
      ETX = 8.0D0*X
  510 CONTINUE
      DTM = FIDAL + FIDAL
      DTM = DTM*DTM
      TM = 0.0D0
      IF (FIDAL.EQ.0.0D0 .AND. ABS(FNF).LT.TOL) GO TO 520
      TM = 4.0D0*FNF*(FIDAL+FIDAL+FNF)
  520 CONTINUE
      TRX = DTM - 1.0D0
      T2 = (TRX+TM)/ETX
      S2 = T2
      RELB = TOL*ABS(T2)
      T1 = ETX
      S1 = 1.0D0
      FN = 1.0D0
      AK = 8.0D0
      DO 530 K=1,13
        T1 = T1 + ETX
        FN = FN + AK
        TRX = DTM - FN
        AP = TRX + TM
        T2 = -T2*AP/T1
        S1 = S1 + T2
        T1 = T1 + ETX
        AK = AK + 8.0D0
        FN = FN + AK
        TRX = DTM - FN
        AP = TRX + TM
        T2 = T2*AP/T1
        S2 = S2 + T2
        IF (ABS(T2).LE.RELB) GO TO 540
        AK = AK + 8.0D0
  530 CONTINUE
  540 TEMP(IS) = COEF*(S1*SB-S2*SA)
      IF(IS.EQ.2) GO TO 560
      FIDAL = FIDAL + 1.0D0
      DALPHA = FIDAL + FNF
      IS = 2
      TB = SA
      SA = -SB
      SB = TB
      GO TO 510
C
C     FORWARD RECURSION SECTION
C
  560 IF (KT.EQ.2) GO TO 470
      S1 = TEMP(1)
      S2 = TEMP(2)
      TX = 2.0D0/X
      TM = DALPHA*TX
      IF (IN.EQ.0) GO TO 580
C
C     FORWARD RECUR TO INDEX ALPHA
C
      DO 570 I=1,IN
        S = S2
        S2 = TM*S2 - S1
        TM = TM + TX
        S1 = S
  570 CONTINUE
      IF (NN.EQ.1) GO TO 600
      S = S2
      S2 = TM*S2 - S1
      TM = TM + TX
      S1 = S
  580 CONTINUE
C
C     FORWARD RECUR FROM INDEX ALPHA TO ALPHA+N-1
C
      Y(1) = S1
      Y(2) = S2
      IF (NN.EQ.2) RETURN
      DO 590 I=3,NN
        Y(I) = TM*Y(I-1) - Y(I-2)
        TM = TM + TX
  590 CONTINUE
      RETURN
  600 Y(1) = S2
      RETURN
C
C     BACKWARD RECURSION WITH NORMALIZATION BY
C     ASYMPTOTIC EXPANSION FOR NU TO INFINITY OR POWER SERIES.
C
  610 CONTINUE
C     COMPUTATION OF LAST ORDER FOR SERIES NORMALIZATION
      AKM = MAX(3.0D0-FN,0.0D0)
      KM = INT(AKM)
      TFN = FN + KM
      TA = (GLN+TFN-0.9189385332D0-0.0833333333D0/TFN)/(TFN+0.5D0)
      TA = XO2L - TA
      TB = -(1.0D0-1.5D0/TFN)/TFN
      AKM = TOLLN/(-TA+SQRT(TA*TA-TOLLN*TB)) + 1.5D0
      IN = KM + INT(AKM)
      GO TO 660
  620 CONTINUE
C     COMPUTATION OF LAST ORDER FOR ASYMPTOTIC EXPANSION NORMALIZATION
      GLN = WK(3) + WK(2)
      IF (WK(6).GT.30.0D0) GO TO 640
      RDEN = (PP(4)*WK(6)+PP(3))*WK(6) + 1.0D0
      RZDEN = PP(1) + PP(2)*WK(6)
      TA = RZDEN/RDEN
      IF (WK(1).LT.0.10D0) GO TO 630
      TB = GLN/WK(5)
      GO TO 650
  630 TB=(1.259921049D0+(0.1679894730D0+0.0887944358D0*WK(1))*WK(1))
     1 /WK(7)
      GO TO 650
  640 CONTINUE
      TA = 0.5D0*TOLLN/WK(4)
      TA=((0.0493827160D0*TA-0.1111111111D0)*TA+0.6666666667D0)*TA*WK(6)
      IF (WK(1).LT.0.10D0) GO TO 630
      TB = GLN/WK(5)
  650 IN = INT(TA/TB+1.5D0)
      IF (IN.GT.INLIM) GO TO 310
  660 CONTINUE
      DTM = FNI + IN
      TRX = 2.0D0/X
      TM = (DTM+FNF)*TRX
      TA = 0.0D0
      TB = TOL
      KK = 1
      AK=1.0D0
  670 CONTINUE
C
C     BACKWARD RECUR UNINDEXED
C
      DO 680 I=1,IN
        S = TB
        TB = TM*TB - TA
        TA = S
        DTM = DTM - 1.0D0
        TM = (DTM+FNF)*TRX
  680 CONTINUE
C     NORMALIZATION
      IF (KK.NE.1) GO TO 690
      S=TEMP(3)
      SA=TA/TB
      TA=S
      TB=S
      IF(ABS(S).GT.SLIM) GO TO 685
      TA=TA*RTOL
      TB=TB*RTOL
      AK=TOL
  685 CONTINUE
      TA=TA*SA
      KK = 2
      IN = NS
      IF (NS.NE.0) GO TO 670
  690 Y(NN) = TB*AK
      NZ = N - NN
      IF (NN.EQ.1) RETURN
      K = NN - 1
      S=TB
      TB = TM*TB - TA
      TA=S
      Y(K)=TB*AK
      IF (NN.EQ.2) RETURN
      DTM = DTM - 1.0D0
      TM = (DTM+FNF)*TRX
      K=NN-2
C
C     BACKWARD RECUR INDEXED
C
      DO 700 I=3,NN
        S=TB
        TB = TM*TB - TA
        TA=S
        Y(K)=TB*AK
        DTM = DTM - 1.0D0
        TM = (DTM+FNF)*TRX
        K = K - 1
  700 CONTINUE
      RETURN
C
C
C
  710 CONTINUE
      ierr=1
c      CALL XERMSG ('SLATEC', 'DBESJ', 'ORDER, ALPHA, LESS THAN ZERO.',
c     +   2, 1)
      RETURN
  720 CONTINUE
      ierr=1
c      CALL XERMSG ('SLATEC', 'DBESJ', 'N LESS THAN ONE.', 2, 1)
      RETURN
  730 CONTINUE
      ierr=1
c      CALL XERMSG ('SLATEC', 'DBESJ', 'X LESS THAN ZERO.', 2, 1)
      RETURN
      END