1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
*DECK DBESJ
SUBROUTINE DBESJ (X, ALPHA, N, Y, NZ,ierr)
C***BEGIN PROLOGUE DBESJ
C***PURPOSE Compute an N member sequence of J Bessel functions
C J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
C and X.
C***LIBRARY SLATEC
C***CATEGORY C10A3
C***TYPE DOUBLE PRECISION (BESJ-S, DBESJ-D)
C***KEYWORDS J BESSEL FUNCTION, SPECIAL FUNCTIONS
C***AUTHOR Amos, D. E., (SNLA)
C Daniel, S. L., (SNLA)
C Weston, M. K., (SNLA)
C***DESCRIPTION
C
C Abstract **** a double precision routine ****
C DBESJ computes an N member sequence of J Bessel functions
C J/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA and X.
C A combination of the power series, the asymptotic expansion
C for X to infinity and the uniform asymptotic expansion for
C NU to infinity are applied over subdivisions of the (NU,X)
C plane. For values of (NU,X) not covered by one of these
C formulae, the order is incremented or decremented by integer
C values into a region where one of the formulae apply. Backward
C recursion is applied to reduce orders by integer values except
C where the entire sequence lies in the oscillatory region. In
C this case forward recursion is stable and values from the
C asymptotic expansion for X to infinity start the recursion
C when it is efficient to do so. Leading terms of the series and
C uniform expansion are tested for underflow. If a sequence is
C requested and the last member would underflow, the result is
C set to zero and the next lower order tried, etc., until a
C member comes on scale or all members are set to zero.
C Overflow cannot occur.
C
C The maximum number of significant digits obtainable
C is the smaller of 14 and the number of digits carried in
C double precision arithmetic.
C
C Description of Arguments
C
C Input X,ALPHA are double precision
C X - X .GE. 0.0D0
C ALPHA - order of first member of the sequence,
C ALPHA .GE. 0.0D0
C N - number of members in the sequence, N .GE. 1
C
C Output Y is double precision
C Y - a vector whose first N components contain
C values for J/sub(ALPHA+K-1)/(X), K=1,...,N
C NZ - number of components of Y set to zero due to
C underflow,
C NZ=0 , normal return, computation completed
C NZ .NE. 0, last NZ components of Y set to zero,
C Y(K)=0.0D0, K=N-NZ+1,...,N.
C
C Error Conditions
C Improper input arguments - a fatal error
C Underflow - a non-fatal error (NZ .NE. 0)
C
C***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
C subroutines IBESS and JBESS for Bessel functions
C I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
C Transactions on Mathematical Software 3, (1977),
C pp. 76-92.
C F. W. J. Olver, Tables of Bessel Functions of Moderate
C or Large Orders, NPL Mathematical Tables 6, Her
C Majesty's Stationery Office, London, 1962.
C***ROUTINES CALLED D1MACH, DASYJY, DJAIRY, DLNGAM, I1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 750101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 890911 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DBESJ
EXTERNAL DJAIRY
INTEGER I,IALP,IDALP,IFLW,IN,INLIM,IS,I1,I2,K,KK,KM,KT,N,NN,
1 NS,NZ
INTEGER I1MACH
DOUBLE PRECISION AK,AKM,ALPHA,ANS,AP,ARG,COEF,DALPHA,DFN,DTM,
1 EARG,ELIM1,ETX,FIDAL,FLGJY,FN,FNF,FNI,FNP1,FNU,
2 FNULIM,GLN,PDF,PIDT,PP,RDEN,RELB,RTTP,RTWO,RTX,RZDEN,
3 S,SA,SB,SXO2,S1,S2,T,TA,TAU,TB,TEMP,TFN,TM,TOL,
4 TOLLN,TRX,TX,T1,T2,WK,X,XO2,XO2L,Y,SLIM,RTOL
SAVE RTWO, PDF, RTTP, PIDT, PP, INLIM, FNULIM
DOUBLE PRECISION D1MACH, DLNGAM
DIMENSION Y(*), TEMP(3), FNULIM(2), PP(4), WK(7)
DATA RTWO,PDF,RTTP,PIDT / 1.34839972492648D+00,
1 7.85398163397448D-01, 7.97884560802865D-01, 1.57079632679490D+00/
DATA PP(1), PP(2), PP(3), PP(4) / 8.72909153935547D+00,
1 2.65693932265030D-01, 1.24578576865586D-01, 7.70133747430388D-04/
DATA INLIM / 150 /
DATA FNULIM(1), FNULIM(2) / 100.0D0, 60.0D0 /
C***FIRST EXECUTABLE STATEMENT DBESJ
ierr=0
NZ = 0
KT = 1
NS=0
C I1MACH(14) REPLACES I1MACH(11) IN A DOUBLE PRECISION CODE
C I1MACH(15) REPLACES I1MACH(12) IN A DOUBLE PRECISION CODE
TA = D1MACH(3)
TOL = MAX(TA,1.0D-15)
I1 = I1MACH(14) + 1
I2 = I1MACH(15)
TB = D1MACH(5)
ELIM1 = -2.303D0*(I2*TB+3.0D0)
RTOL=1.0D0/TOL
SLIM=D1MACH(1)*RTOL*1.0D+3
C TOLLN = -LN(TOL)
TOLLN = 2.303D0*TB*I1
TOLLN = MIN(TOLLN,34.5388D0)
IF (N-1) 720, 10, 20
10 KT = 2
20 NN = N
IF (X) 730, 30, 80
30 IF (ALPHA) 710, 40, 50
40 Y(1) = 1.0D0
IF (N.EQ.1) RETURN
I1 = 2
GO TO 60
50 I1 = 1
60 DO 70 I=I1,N
Y(I) = 0.0D0
70 CONTINUE
RETURN
80 CONTINUE
IF (ALPHA.LT.0.0D0) GO TO 710
C
IALP = INT(ALPHA)
FNI = IALP + N - 1
FNF = ALPHA - IALP
DFN = FNI + FNF
FNU = DFN
XO2 = X*0.5D0
SXO2 = XO2*XO2
C
C DECISION TREE FOR REGION WHERE SERIES, ASYMPTOTIC EXPANSION FOR X
C TO INFINITY AND ASYMPTOTIC EXPANSION FOR NU TO INFINITY ARE
C APPLIED.
C
IF (SXO2.LE.(FNU+1.0D0)) GO TO 90
TA = MAX(20.0D0,FNU)
IF (X.GT.TA) GO TO 120
IF (X.GT.12.0D0) GO TO 110
XO2L = LOG(XO2)
NS = INT(SXO2-FNU) + 1
GO TO 100
90 FN = FNU
FNP1 = FN + 1.0D0
XO2L = LOG(XO2)
IS = KT
IF (X.LE.0.50D0) GO TO 330
NS = 0
100 FNI = FNI + NS
DFN = FNI + FNF
FN = DFN
FNP1 = FN + 1.0D0
IS = KT
IF (N-1+NS.GT.0) IS = 3
GO TO 330
110 ANS = MAX(36.0D0-FNU,0.0D0)
NS = INT(ANS)
FNI = FNI + NS
DFN = FNI + FNF
FN = DFN
IS = KT
IF (N-1+NS.GT.0) IS = 3
GO TO 130
120 CONTINUE
RTX = SQRT(X)
TAU = RTWO*RTX
TA = TAU + FNULIM(KT)
IF (FNU.LE.TA) GO TO 480
FN = FNU
IS = KT
C
C UNIFORM ASYMPTOTIC EXPANSION FOR NU TO INFINITY
C
130 CONTINUE
I1 = ABS(3-IS)
I1 = MAX(I1,1)
FLGJY = 1.0D0
CALL DASYJY(DJAIRY,X,FN,FLGJY,I1,TEMP(IS),WK,IFLW)
IF(IFLW.NE.0) GO TO 380
GO TO (320, 450, 620), IS
310 TEMP(1) = TEMP(3)
KT = 1
320 IS = 2
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
IF(I1.EQ.2) GO TO 450
GO TO 130
C
C SERIES FOR (X/2)**2.LE.NU+1
C
330 CONTINUE
GLN = DLNGAM(FNP1)
ARG = FN*XO2L - GLN
IF (ARG.LT.(-ELIM1)) GO TO 400
EARG = EXP(ARG)
340 CONTINUE
S = 1.0D0
IF (X.LT.TOL) GO TO 360
AK = 3.0D0
T2 = 1.0D0
T = 1.0D0
S1 = FN
DO 350 K=1,17
S2 = T2 + S1
T = -T*SXO2/S2
S = S + T
IF (ABS(T).LT.TOL) GO TO 360
T2 = T2 + AK
AK = AK + 2.0D0
S1 = S1 + FN
350 CONTINUE
360 CONTINUE
TEMP(IS) = S*EARG
GO TO (370, 450, 610), IS
370 EARG = EARG*FN/XO2
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
IS = 2
GO TO 340
C
C SET UNDERFLOW VALUE AND UPDATE PARAMETERS
C UNDERFLOW CAN ONLY OCCUR FOR NS=0 SINCE THE ORDER MUST BE LARGER
C THAN 36. THEREFORE, NS NEE NOT BE TESTED.
C
380 Y(NN) = 0.0D0
NN = NN - 1
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
IF (NN-1) 440, 390, 130
390 KT = 2
IS = 2
GO TO 130
400 Y(NN) = 0.0D0
NN = NN - 1
FNP1 = FN
FNI = FNI - 1.0D0
DFN = FNI + FNF
FN = DFN
IF (NN-1) 440, 410, 420
410 KT = 2
IS = 2
420 IF (SXO2.LE.FNP1) GO TO 430
GO TO 130
430 ARG = ARG - XO2L + LOG(FNP1)
IF (ARG.LT.(-ELIM1)) GO TO 400
GO TO 330
440 NZ = N - NN
RETURN
C
C BACKWARD RECURSION SECTION
C
450 CONTINUE
IF(NS.NE.0) GO TO 451
NZ = N - NN
IF (KT.EQ.2) GO TO 470
C BACKWARD RECUR FROM INDEX ALPHA+NN-1 TO ALPHA
Y(NN) = TEMP(1)
Y(NN-1) = TEMP(2)
IF (NN.EQ.2) RETURN
451 CONTINUE
TRX = 2.0D0/X
DTM = FNI
TM = (DTM+FNF)*TRX
AK=1.0D0
TA=TEMP(1)
TB=TEMP(2)
IF(ABS(TA).GT.SLIM) GO TO 455
TA=TA*RTOL
TB=TB*RTOL
AK=TOL
455 CONTINUE
KK=2
IN=NS-1
IF(IN.EQ.0) GO TO 690
IF(NS.NE.0) GO TO 670
K=NN-2
DO 460 I=3,NN
S=TB
TB = TM*TB - TA
TA=S
Y(K)=TB*AK
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
K = K - 1
460 CONTINUE
RETURN
470 Y(1) = TEMP(2)
RETURN
C
C ASYMPTOTIC EXPANSION FOR X TO INFINITY WITH FORWARD RECURSION IN
C OSCILLATORY REGION X.GT.MAX(20, NU), PROVIDED THE LAST MEMBER
C OF THE SEQUENCE IS ALSO IN THE REGION.
C
480 CONTINUE
IN = INT(ALPHA-TAU+2.0D0)
IF (IN.LE.0) GO TO 490
IDALP = IALP - IN - 1
KT = 1
GO TO 500
490 CONTINUE
IDALP = IALP
IN = 0
500 IS = KT
FIDAL = IDALP
DALPHA = FIDAL + FNF
ARG = X - PIDT*DALPHA - PDF
SA = SIN(ARG)
SB = COS(ARG)
COEF = RTTP/RTX
ETX = 8.0D0*X
510 CONTINUE
DTM = FIDAL + FIDAL
DTM = DTM*DTM
TM = 0.0D0
IF (FIDAL.EQ.0.0D0 .AND. ABS(FNF).LT.TOL) GO TO 520
TM = 4.0D0*FNF*(FIDAL+FIDAL+FNF)
520 CONTINUE
TRX = DTM - 1.0D0
T2 = (TRX+TM)/ETX
S2 = T2
RELB = TOL*ABS(T2)
T1 = ETX
S1 = 1.0D0
FN = 1.0D0
AK = 8.0D0
DO 530 K=1,13
T1 = T1 + ETX
FN = FN + AK
TRX = DTM - FN
AP = TRX + TM
T2 = -T2*AP/T1
S1 = S1 + T2
T1 = T1 + ETX
AK = AK + 8.0D0
FN = FN + AK
TRX = DTM - FN
AP = TRX + TM
T2 = T2*AP/T1
S2 = S2 + T2
IF (ABS(T2).LE.RELB) GO TO 540
AK = AK + 8.0D0
530 CONTINUE
540 TEMP(IS) = COEF*(S1*SB-S2*SA)
IF(IS.EQ.2) GO TO 560
FIDAL = FIDAL + 1.0D0
DALPHA = FIDAL + FNF
IS = 2
TB = SA
SA = -SB
SB = TB
GO TO 510
C
C FORWARD RECURSION SECTION
C
560 IF (KT.EQ.2) GO TO 470
S1 = TEMP(1)
S2 = TEMP(2)
TX = 2.0D0/X
TM = DALPHA*TX
IF (IN.EQ.0) GO TO 580
C
C FORWARD RECUR TO INDEX ALPHA
C
DO 570 I=1,IN
S = S2
S2 = TM*S2 - S1
TM = TM + TX
S1 = S
570 CONTINUE
IF (NN.EQ.1) GO TO 600
S = S2
S2 = TM*S2 - S1
TM = TM + TX
S1 = S
580 CONTINUE
C
C FORWARD RECUR FROM INDEX ALPHA TO ALPHA+N-1
C
Y(1) = S1
Y(2) = S2
IF (NN.EQ.2) RETURN
DO 590 I=3,NN
Y(I) = TM*Y(I-1) - Y(I-2)
TM = TM + TX
590 CONTINUE
RETURN
600 Y(1) = S2
RETURN
C
C BACKWARD RECURSION WITH NORMALIZATION BY
C ASYMPTOTIC EXPANSION FOR NU TO INFINITY OR POWER SERIES.
C
610 CONTINUE
C COMPUTATION OF LAST ORDER FOR SERIES NORMALIZATION
AKM = MAX(3.0D0-FN,0.0D0)
KM = INT(AKM)
TFN = FN + KM
TA = (GLN+TFN-0.9189385332D0-0.0833333333D0/TFN)/(TFN+0.5D0)
TA = XO2L - TA
TB = -(1.0D0-1.5D0/TFN)/TFN
AKM = TOLLN/(-TA+SQRT(TA*TA-TOLLN*TB)) + 1.5D0
IN = KM + INT(AKM)
GO TO 660
620 CONTINUE
C COMPUTATION OF LAST ORDER FOR ASYMPTOTIC EXPANSION NORMALIZATION
GLN = WK(3) + WK(2)
IF (WK(6).GT.30.0D0) GO TO 640
RDEN = (PP(4)*WK(6)+PP(3))*WK(6) + 1.0D0
RZDEN = PP(1) + PP(2)*WK(6)
TA = RZDEN/RDEN
IF (WK(1).LT.0.10D0) GO TO 630
TB = GLN/WK(5)
GO TO 650
630 TB=(1.259921049D0+(0.1679894730D0+0.0887944358D0*WK(1))*WK(1))
1 /WK(7)
GO TO 650
640 CONTINUE
TA = 0.5D0*TOLLN/WK(4)
TA=((0.0493827160D0*TA-0.1111111111D0)*TA+0.6666666667D0)*TA*WK(6)
IF (WK(1).LT.0.10D0) GO TO 630
TB = GLN/WK(5)
650 IN = INT(TA/TB+1.5D0)
IF (IN.GT.INLIM) GO TO 310
660 CONTINUE
DTM = FNI + IN
TRX = 2.0D0/X
TM = (DTM+FNF)*TRX
TA = 0.0D0
TB = TOL
KK = 1
AK=1.0D0
670 CONTINUE
C
C BACKWARD RECUR UNINDEXED
C
DO 680 I=1,IN
S = TB
TB = TM*TB - TA
TA = S
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
680 CONTINUE
C NORMALIZATION
IF (KK.NE.1) GO TO 690
S=TEMP(3)
SA=TA/TB
TA=S
TB=S
IF(ABS(S).GT.SLIM) GO TO 685
TA=TA*RTOL
TB=TB*RTOL
AK=TOL
685 CONTINUE
TA=TA*SA
KK = 2
IN = NS
IF (NS.NE.0) GO TO 670
690 Y(NN) = TB*AK
NZ = N - NN
IF (NN.EQ.1) RETURN
K = NN - 1
S=TB
TB = TM*TB - TA
TA=S
Y(K)=TB*AK
IF (NN.EQ.2) RETURN
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
K=NN-2
C
C BACKWARD RECUR INDEXED
C
DO 700 I=3,NN
S=TB
TB = TM*TB - TA
TA=S
Y(K)=TB*AK
DTM = DTM - 1.0D0
TM = (DTM+FNF)*TRX
K = K - 1
700 CONTINUE
RETURN
C
C
C
710 CONTINUE
ierr=1
c CALL XERMSG ('SLATEC', 'DBESJ', 'ORDER, ALPHA, LESS THAN ZERO.',
c + 2, 1)
RETURN
720 CONTINUE
ierr=1
c CALL XERMSG ('SLATEC', 'DBESJ', 'N LESS THAN ONE.', 2, 1)
RETURN
730 CONTINUE
ierr=1
c CALL XERMSG ('SLATEC', 'DBESJ', 'X LESS THAN ZERO.', 2, 1)
RETURN
END
|