File: dbesy.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (208 lines) | stat: -rw-r--r-- 6,565 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
*DECK DBESY
      SUBROUTINE DBESY (X, FNU, N, Y,ierr)
C***BEGIN PROLOGUE  DBESY
C***PURPOSE  Implement forward recursion on the three term recursion
C            relation for a sequence of non-negative order Bessel
C            functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
C            X and non-negative orders FNU.
C***LIBRARY   SLATEC
C***CATEGORY  C10A3
C***TYPE      DOUBLE PRECISION (BESY-S, DBESY-D)
C***KEYWORDS  SPECIAL FUNCTIONS, Y BESSEL FUNCTION
C***AUTHOR  Amos, D. E., (SNLA)
C***DESCRIPTION
C
C     Abstract  **** a double precision routine ****
C         DBESY implements forward recursion on the three term
C         recursion relation for a sequence of non-negative order Bessel
C         functions Y/sub(FNU+I-1)/(X), I=1,N for real X .GT. 0.0D0 and
C         non-negative orders FNU.  If FNU .LT. NULIM, orders FNU and
C         FNU+1 are obtained from DBSYNU which computes by a power
C         series for X .LE. 2, the K Bessel function of an imaginary
C         argument for 2 .LT. X .LE. 20 and the asymptotic expansion for
C         X .GT. 20.
C
C         If FNU .GE. NULIM, the uniform asymptotic expansion is coded
C         in DASYJY for orders FNU and FNU+1 to start the recursion.
C         NULIM is 70 or 100 depending on whether N=1 or N .GE. 2.  An
C         overflow test is made on the leading term of the asymptotic
C         expansion before any extensive computation is done.
C
C         The maximum number of significant digits obtainable
C         is the smaller of 14 and the number of digits carried in
C         double precision arithmetic.
C
C     Description of Arguments
C
C         Input
C           X      - X .GT. 0.0D0
C           FNU    - order of the initial Y function, FNU .GE. 0.0D0
C           N      - number of members in the sequence, N .GE. 1
C
C         Output
C           Y      - a vector whose first N components contain values
C                    for the sequence Y(I)=Y/sub(FNU+I-1)/(X), I=1,N.
C
C     Error Conditions
C         Improper input arguments - a fatal error
C         Overflow - a fatal error
C
C***REFERENCES  F. W. J. Olver, Tables of Bessel Functions of Moderate
C                 or Large Orders, NPL Mathematical Tables 6, Her
C                 Majesty's Stationery Office, London, 1962.
C               N. M. Temme, On the numerical evaluation of the modified
C                 Bessel function of the third kind, Journal of
C                 Computational Physics 19, (1975), pp. 324-337.
C               N. M. Temme, On the numerical evaluation of the ordinary
C                 Bessel function of the second kind, Journal of
C                 Computational Physics 21, (1976), pp. 343-350.
C***ROUTINES CALLED  D1MACH, DASYJY, DBESY0, DBESY1, DBSYNU, DYAIRY,
C                    XERMSG
C***REVISION HISTORY  (YYMMDD)
C   800501  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890911  Removed unnecessary intrinsics.  (WRB)
C   890911  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  DBESY
C
      EXTERNAL DYAIRY
      INTEGER I, IFLW, J, N, NB, ND, NN, NUD, NULIM
      INTEGER I1MACH
      DOUBLE PRECISION AZN,CN,DNU,ELIM,FLGJY,FN,FNU,RAN,S,S1,S2,TM,TRX,
     1           W,WK,W2N,X,XLIM,XXN,Y
      DOUBLE PRECISION DBESY0, DBESY1, D1MACH
      DIMENSION W(2), NULIM(2), Y(*), WK(7)
      SAVE NULIM
      DATA NULIM(1),NULIM(2) / 70 , 100 /
C***FIRST EXECUTABLE STATEMENT  DBESY
      ierr=0
      NN = -I1MACH(15)
      ELIM = 2.303D0*(NN*D1MACH(5)-3.0D0)
      XLIM = D1MACH(1)*1.0D+3
      IF (FNU.LT.0.0D0) GO TO 140
      IF (X.LE.0.0D0) GO TO 150
      IF (X.LT.XLIM) GO TO 170
      IF (N.LT.1) GO TO 160
C
C     ND IS A DUMMY VARIABLE FOR N
C
      ND = N
      NUD = INT(FNU)
      DNU = FNU - NUD
      NN = MIN(2,ND)
      FN = FNU + N - 1
      IF (FN.LT.2.0D0) GO TO 100
C
C     OVERFLOW TEST  (LEADING EXPONENTIAL OF ASYMPTOTIC EXPANSION)
C     FOR THE LAST ORDER, FNU+N-1.GE.NULIM
C
      XXN = X/FN
      W2N = 1.0D0-XXN*XXN
      IF(W2N.LE.0.0D0) GO TO 10
      RAN = SQRT(W2N)
      AZN = LOG((1.0D0+RAN)/XXN) - RAN
      CN = FN*AZN
      IF(CN.GT.ELIM) GO TO 170
   10 CONTINUE
      IF (NUD.LT.NULIM(NN)) GO TO 20
C
C     ASYMPTOTIC EXPANSION FOR ORDERS FNU AND FNU+1.GE.NULIM
C
      FLGJY = -1.0D0
      CALL DASYJY(DYAIRY,X,FNU,FLGJY,NN,Y,WK,IFLW)
      IF(IFLW.NE.0) GO TO 170
      IF (NN.EQ.1) RETURN
      TRX = 2.0D0/X
      TM = (FNU+FNU+2.0D0)/X
      GO TO 80
C
   20 CONTINUE
      IF (DNU.NE.0.0D0) GO TO 30
      S1 = DBESY0(X)
      IF (NUD.EQ.0 .AND. ND.EQ.1) GO TO 70
      S2 = DBESY1(X)
      GO TO 40
   30 CONTINUE
      NB = 2
      IF (NUD.EQ.0 .AND. ND.EQ.1) NB = 1
      CALL DBSYNU(X, DNU, NB, W)
      S1 = W(1)
      IF (NB.EQ.1) GO TO 70
      S2 = W(2)
   40 CONTINUE
      TRX = 2.0D0/X
      TM = (DNU+DNU+2.0D0)/X
C     FORWARD RECUR FROM DNU TO FNU+1 TO GET Y(1) AND Y(2)
      IF (ND.EQ.1) NUD = NUD - 1
      IF (NUD.GT.0) GO TO 50
      IF (ND.GT.1) GO TO 70
      S1 = S2
      GO TO 70
   50 CONTINUE
      DO 60 I=1,NUD
        S = S2
        S2 = TM*S2 - S1
        S1 = S
        TM = TM + TRX
   60 CONTINUE
      IF (ND.EQ.1) S1 = S2
   70 CONTINUE
      Y(1) = S1
      IF (ND.EQ.1) RETURN
      Y(2) = S2
   80 CONTINUE
      IF (ND.EQ.2) RETURN
C     FORWARD RECUR FROM FNU+2 TO FNU+N-1
      DO 90 I=3,ND
        Y(I) = TM*Y(I-1) - Y(I-2)
        TM = TM + TRX
   90 CONTINUE
      RETURN
C
  100 CONTINUE
C     OVERFLOW TEST
      IF (FN.LE.1.0D0) GO TO 110
      IF (-FN*(LOG(X)-0.693D0).GT.ELIM) GO TO 170
  110 CONTINUE
      IF (DNU.EQ.0.0D0) GO TO 120
      CALL DBSYNU(X, FNU, ND, Y)
      RETURN
  120 CONTINUE
      J = NUD
      IF (J.EQ.1) GO TO 130
      J = J + 1
      Y(J) = DBESY0(X)
      IF (ND.EQ.1) RETURN
      J = J + 1
  130 CONTINUE
      Y(J) = DBESY1(X)
      IF (ND.EQ.1) RETURN
      TRX = 2.0D0/X
      TM = TRX
      GO TO 80
C
C
C
  140 CONTINUE
      ierr=1
c      CALL XERMSG ('SLATEC', 'DBESY', 'ORDER, FNU, LESS THAN ZERO', 2,
c     +   1)
      RETURN
  150 CONTINUE
      ierr=1
c      CALL XERMSG ('SLATEC', 'DBESY', 'X LESS THAN OR EQUAL TO ZERO',
c     +   2, 1)
      RETURN
  160 CONTINUE
      ierr=1
c      CALL XERMSG ('SLATEC', 'DBESY', 'N LESS THAN ONE', 2, 1)
      RETURN
  170 CONTINUE
      ierr=2
c      CALL XERMSG ('SLATEC', 'DBESY',
c     +   'OVERFLOW, FNU OR N TOO LARGE OR X TOO SMALL', 6, 1)
      RETURN
      END