1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
*DECK DBSKNU
SUBROUTINE DBSKNU (X, FNU, KODE, N, Y, NZ)
C***BEGIN PROLOGUE DBSKNU
C***SUBSIDIARY
C***PURPOSE Subsidiary to DBESK
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (BESKNU-S, DBSKNU-D)
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Abstract **** A DOUBLE PRECISION routine ****
C DBSKNU computes N member sequences of K Bessel functions
C K/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
C positive X. Equations of the references are implemented on
C small orders DNU for K/SUB(DNU)/(X) and K/SUB(DNU+1)/(X).
C Forward recursion with the three term recursion relation
C generates higher orders FNU+I-1, I=1,...,N. The parameter
C KODE permits K/SUB(FNU+I-1)/(X) values or scaled values
C EXP(X)*K/SUB(FNU+I-1)/(X), I=1,N to be returned.
C
C To start the recursion FNU is normalized to the interval
C -0.5.LE.DNU.LT.0.5. A special form of the power series is
C implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
C K Bessel function in terms of the confluent hypergeometric
C function U(FNU+0.5,2*FNU+1,X) is implemented on X1.LT.X.LE.X2.
C For X.GT.X2, the asymptotic expansion for large X is used.
C When FNU is a half odd integer, a special formula for
C DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.
C
C The maximum number of significant digits obtainable
C is the smaller of 14 and the number of digits carried in
C DOUBLE PRECISION arithmetic.
C
C DBSKNU assumes that a significant digit SINH function is
C available.
C
C Description of Arguments
C
C INPUT X,FNU are DOUBLE PRECISION
C X - X.GT.0.0D0
C FNU - Order of initial K function, FNU.GE.0.0D0
C N - Number of members of the sequence, N.GE.1
C KODE - A parameter to indicate the scaling option
C KODE= 1 returns
C Y(I)= K/SUB(FNU+I-1)/(X)
C I=1,...,N
C = 2 returns
C Y(I)=EXP(X)*K/SUB(FNU+I-1)/(X)
C I=1,...,N
C
C OUTPUT Y is DOUBLE PRECISION
C Y - A vector whose first N components contain values
C for the sequence
C Y(I)= K/SUB(FNU+I-1)/(X), I=1,...,N or
C Y(I)=EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N
C depending on KODE
C NZ - Number of components set to zero due to
C underflow,
C NZ= 0 , normal return
C NZ.NE.0 , first NZ components of Y set to zero
C due to underflow, Y(I)=0.0D0,I=1,...,NZ
C
C Error Conditions
C Improper input arguments - a fatal error
C Overflow - a fatal error
C Underflow with KODE=1 - a non-fatal error (NZ.NE.0)
C
C***SEE ALSO DBESK
C***REFERENCES N. M. Temme, On the numerical evaluation of the modified
C Bessel function of the third kind, Journal of
C Computational Physics 19, (1975), pp. 324-337.
C***ROUTINES CALLED D1MACH, DGAMMA, I1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 790201 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 900328 Added TYPE section. (WRB)
C 900727 Added EXTERNAL statement. (WRB)
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DBSKNU
C
INTEGER I, IFLAG, INU, J, K, KK, KODE, KODED, N, NN, NZ
INTEGER I1MACH
DOUBLE PRECISION A,AK,A1,A2,B,BK,CC,CK,COEF,CX,DK,DNU,DNU2,ELIM,
1 ETEST, EX, F, FC, FHS, FK, FKS, FLRX, FMU, FNU, G1, G2, P, PI,
2 PT, P1, P2, Q, RTHPI, RX, S, SMU, SQK, ST, S1, S2, TM, TOL, T1,
3 T2, X, X1, X2, Y
DIMENSION A(160), B(160), Y(*), CC(8)
DOUBLE PRECISION DGAMMA, D1MACH
EXTERNAL DGAMMA
SAVE X1, X2, PI, RTHPI, CC
DATA X1, X2 / 2.0D0, 17.0D0 /
DATA PI,RTHPI / 3.14159265358979D+00, 1.25331413731550D+00/
DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)
1 / 5.77215664901533D-01,-4.20026350340952D-02,
2-4.21977345555443D-02, 7.21894324666300D-03,-2.15241674114900D-04,
3-2.01348547807000D-05, 1.13302723200000D-06, 6.11609500000000D-09/
C***FIRST EXECUTABLE STATEMENT DBSKNU
KK = -I1MACH(15)
ELIM = 2.303D0*(KK*D1MACH(5)-3.0D0)
AK = D1MACH(3)
TOL = MAX(AK,1.0D-15)
IF (X.LE.0.0D0) GO TO 350
IF (FNU.LT.0.0D0) GO TO 360
IF (KODE.LT.1 .OR. KODE.GT.2) GO TO 370
IF (N.LT.1) GO TO 380
NZ = 0
IFLAG = 0
KODED = KODE
RX = 2.0D0/X
INU = INT(FNU+0.5D0)
DNU = FNU - INU
IF (ABS(DNU).EQ.0.5D0) GO TO 120
DNU2 = 0.0D0
IF (ABS(DNU).LT.TOL) GO TO 10
DNU2 = DNU*DNU
10 CONTINUE
IF (X.GT.X1) GO TO 120
C
C SERIES FOR X.LE.X1
C
A1 = 1.0D0 - DNU
A2 = 1.0D0 + DNU
T1 = 1.0D0/DGAMMA(A1)
T2 = 1.0D0/DGAMMA(A2)
IF (ABS(DNU).GT.0.1D0) GO TO 40
C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
S = CC(1)
AK = 1.0D0
DO 20 K=2,8
AK = AK*DNU2
TM = CC(K)*AK
S = S + TM
IF (ABS(TM).LT.TOL) GO TO 30
20 CONTINUE
30 G1 = -S
GO TO 50
40 CONTINUE
G1 = (T1-T2)/(DNU+DNU)
50 CONTINUE
G2 = (T1+T2)*0.5D0
SMU = 1.0D0
FC = 1.0D0
FLRX = LOG(RX)
FMU = DNU*FLRX
IF (DNU.EQ.0.0D0) GO TO 60
FC = DNU*PI
FC = FC/SIN(FC)
IF (FMU.NE.0.0D0) SMU = SINH(FMU)/FMU
60 CONTINUE
F = FC*(G1*COSH(FMU)+G2*FLRX*SMU)
FC = EXP(FMU)
P = 0.5D0*FC/T2
Q = 0.5D0/(FC*T1)
AK = 1.0D0
CK = 1.0D0
BK = 1.0D0
S1 = F
S2 = P
IF (INU.GT.0 .OR. N.GT.1) GO TO 90
IF (X.LT.TOL) GO TO 80
CX = X*X*0.25D0
70 CONTINUE
F = (AK*F+P+Q)/(BK-DNU2)
P = P/(AK-DNU)
Q = Q/(AK+DNU)
CK = CK*CX/AK
T1 = CK*F
S1 = S1 + T1
BK = BK + AK + AK + 1.0D0
AK = AK + 1.0D0
S = ABS(T1)/(1.0D0+ABS(S1))
IF (S.GT.TOL) GO TO 70
80 CONTINUE
Y(1) = S1
IF (KODED.EQ.1) RETURN
Y(1) = S1*EXP(X)
RETURN
90 CONTINUE
IF (X.LT.TOL) GO TO 110
CX = X*X*0.25D0
100 CONTINUE
F = (AK*F+P+Q)/(BK-DNU2)
P = P/(AK-DNU)
Q = Q/(AK+DNU)
CK = CK*CX/AK
T1 = CK*F
S1 = S1 + T1
T2 = CK*(P-AK*F)
S2 = S2 + T2
BK = BK + AK + AK + 1.0D0
AK = AK + 1.0D0
S = ABS(T1)/(1.0D0+ABS(S1)) + ABS(T2)/(1.0D0+ABS(S2))
IF (S.GT.TOL) GO TO 100
110 CONTINUE
S2 = S2*RX
IF (KODED.EQ.1) GO TO 170
F = EXP(X)
S1 = S1*F
S2 = S2*F
GO TO 170
120 CONTINUE
COEF = RTHPI/SQRT(X)
IF (KODED.EQ.2) GO TO 130
IF (X.GT.ELIM) GO TO 330
COEF = COEF*EXP(-X)
130 CONTINUE
IF (ABS(DNU).EQ.0.5D0) GO TO 340
IF (X.GT.X2) GO TO 280
C
C MILLER ALGORITHM FOR X1.LT.X.LE.X2
C
ETEST = COS(PI*DNU)/(PI*X*TOL)
FKS = 1.0D0
FHS = 0.25D0
FK = 0.0D0
CK = X + X + 2.0D0
P1 = 0.0D0
P2 = 1.0D0
K = 0
140 CONTINUE
K = K + 1
FK = FK + 1.0D0
AK = (FHS-DNU2)/(FKS+FK)
BK = CK/(FK+1.0D0)
PT = P2
P2 = BK*P2 - AK*P1
P1 = PT
A(K) = AK
B(K) = BK
CK = CK + 2.0D0
FKS = FKS + FK + FK + 1.0D0
FHS = FHS + FK + FK
IF (ETEST.GT.FK*P1) GO TO 140
KK = K
S = 1.0D0
P1 = 0.0D0
P2 = 1.0D0
DO 150 I=1,K
PT = P2
P2 = (B(KK)*P2-P1)/A(KK)
P1 = PT
S = S + P2
KK = KK - 1
150 CONTINUE
S1 = COEF*(P2/S)
IF (INU.GT.0 .OR. N.GT.1) GO TO 160
GO TO 200
160 CONTINUE
S2 = S1*(X+DNU+0.5D0-P1/P2)/X
C
C FORWARD RECURSION ON THE THREE TERM RECURSION RELATION
C
170 CONTINUE
CK = (DNU+DNU+2.0D0)/X
IF (N.EQ.1) INU = INU - 1
IF (INU.GT.0) GO TO 180
IF (N.GT.1) GO TO 200
S1 = S2
GO TO 200
180 CONTINUE
DO 190 I=1,INU
ST = S2
S2 = CK*S2 + S1
S1 = ST
CK = CK + RX
190 CONTINUE
IF (N.EQ.1) S1 = S2
200 CONTINUE
IF (IFLAG.EQ.1) GO TO 220
Y(1) = S1
IF (N.EQ.1) RETURN
Y(2) = S2
IF (N.EQ.2) RETURN
DO 210 I=3,N
Y(I) = CK*Y(I-1) + Y(I-2)
CK = CK + RX
210 CONTINUE
RETURN
C IFLAG=1 CASES
220 CONTINUE
S = -X + LOG(S1)
Y(1) = 0.0D0
NZ = 1
IF (S.LT.-ELIM) GO TO 230
Y(1) = EXP(S)
NZ = 0
230 CONTINUE
IF (N.EQ.1) RETURN
S = -X + LOG(S2)
Y(2) = 0.0D0
NZ = NZ + 1
IF (S.LT.-ELIM) GO TO 240
NZ = NZ - 1
Y(2) = EXP(S)
240 CONTINUE
IF (N.EQ.2) RETURN
KK = 2
IF (NZ.LT.2) GO TO 260
DO 250 I=3,N
KK = I
ST = S2
S2 = CK*S2 + S1
S1 = ST
CK = CK + RX
S = -X + LOG(S2)
NZ = NZ + 1
Y(I) = 0.0D0
IF (S.LT.-ELIM) GO TO 250
Y(I) = EXP(S)
NZ = NZ - 1
GO TO 260
250 CONTINUE
RETURN
260 CONTINUE
IF (KK.EQ.N) RETURN
S2 = S2*CK + S1
CK = CK + RX
KK = KK + 1
Y(KK) = EXP(-X+LOG(S2))
IF (KK.EQ.N) RETURN
KK = KK + 1
DO 270 I=KK,N
Y(I) = CK*Y(I-1) + Y(I-2)
CK = CK + RX
270 CONTINUE
RETURN
C
C ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2
C
C IFLAG=0 MEANS NO UNDERFLOW OCCURRED
C IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH
C KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD
C RECURSION
280 CONTINUE
NN = 2
IF (INU.EQ.0 .AND. N.EQ.1) NN = 1
DNU2 = DNU + DNU
FMU = 0.0D0
IF (ABS(DNU2).LT.TOL) GO TO 290
FMU = DNU2*DNU2
290 CONTINUE
EX = X*8.0D0
S2 = 0.0D0
DO 320 K=1,NN
S1 = S2
S = 1.0D0
AK = 0.0D0
CK = 1.0D0
SQK = 1.0D0
DK = EX
DO 300 J=1,30
CK = CK*(FMU-SQK)/DK
S = S + CK
DK = DK + EX
AK = AK + 8.0D0
SQK = SQK + AK
IF (ABS(CK).LT.TOL) GO TO 310
300 CONTINUE
310 S2 = S*COEF
FMU = FMU + 8.0D0*DNU + 4.0D0
320 CONTINUE
IF (NN.GT.1) GO TO 170
S1 = S2
GO TO 200
330 CONTINUE
KODED = 2
IFLAG = 1
GO TO 120
C
C FNU=HALF ODD INTEGER CASE
C
340 CONTINUE
S1 = COEF
S2 = COEF
GO TO 170
C
C
350 CALL XERMSG ('SLATEC', 'DBSKNU', 'X NOT GREATER THAN ZERO', 2, 1)
RETURN
360 CALL XERMSG ('SLATEC', 'DBSKNU', 'FNU NOT ZERO OR POSITIVE', 2,
+ 1)
RETURN
370 CALL XERMSG ('SLATEC', 'DBSKNU', 'KODE NOT 1 OR 2', 2, 1)
RETURN
380 CALL XERMSG ('SLATEC', 'DBSKNU', 'N NOT GREATER THAN 0', 2, 1)
RETURN
END
|