File: dbsknu.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (393 lines) | stat: -rw-r--r-- 11,310 bytes parent folder | download | duplicates (30)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
*DECK DBSKNU
      SUBROUTINE DBSKNU (X, FNU, KODE, N, Y, NZ)
C***BEGIN PROLOGUE  DBSKNU
C***SUBSIDIARY
C***PURPOSE  Subsidiary to DBESK
C***LIBRARY   SLATEC
C***TYPE      DOUBLE PRECISION (BESKNU-S, DBSKNU-D)
C***AUTHOR  Amos, D. E., (SNLA)
C***DESCRIPTION
C
C     Abstract  **** A DOUBLE PRECISION routine ****
C         DBSKNU computes N member sequences of K Bessel functions
C         K/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
C         positive X. Equations of the references are implemented on
C         small orders DNU for K/SUB(DNU)/(X) and K/SUB(DNU+1)/(X).
C         Forward recursion with the three term recursion relation
C         generates higher orders FNU+I-1, I=1,...,N. The parameter
C         KODE permits K/SUB(FNU+I-1)/(X) values or scaled values
C         EXP(X)*K/SUB(FNU+I-1)/(X), I=1,N to be returned.
C
C         To start the recursion FNU is normalized to the interval
C         -0.5.LE.DNU.LT.0.5. A special form of the power series is
C         implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
C         K Bessel function in terms of the confluent hypergeometric
C         function U(FNU+0.5,2*FNU+1,X) is implemented on X1.LT.X.LE.X2.
C         For X.GT.X2, the asymptotic expansion for large X is used.
C         When FNU is a half odd integer, a special formula for
C         DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.
C
C         The maximum number of significant digits obtainable
C         is the smaller of 14 and the number of digits carried in
C         DOUBLE PRECISION arithmetic.
C
C         DBSKNU assumes that a significant digit SINH function is
C         available.
C
C     Description of Arguments
C
C         INPUT      X,FNU are DOUBLE PRECISION
C           X      - X.GT.0.0D0
C           FNU    - Order of initial K function, FNU.GE.0.0D0
C           N      - Number of members of the sequence, N.GE.1
C           KODE   - A parameter to indicate the scaling option
C                    KODE= 1  returns
C                             Y(I)=       K/SUB(FNU+I-1)/(X)
C                                  I=1,...,N
C                        = 2  returns
C                             Y(I)=EXP(X)*K/SUB(FNU+I-1)/(X)
C                                  I=1,...,N
C
C         OUTPUT     Y is DOUBLE PRECISION
C           Y      - A vector whose first N components contain values
C                    for the sequence
C                    Y(I)=       K/SUB(FNU+I-1)/(X), I=1,...,N or
C                    Y(I)=EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N
C                    depending on KODE
C           NZ     - Number of components set to zero due to
C                    underflow,
C                    NZ= 0   , normal return
C                    NZ.NE.0 , first NZ components of Y set to zero
C                              due to underflow, Y(I)=0.0D0,I=1,...,NZ
C
C     Error Conditions
C         Improper input arguments - a fatal error
C         Overflow - a fatal error
C         Underflow with KODE=1 - a non-fatal error (NZ.NE.0)
C
C***SEE ALSO  DBESK
C***REFERENCES  N. M. Temme, On the numerical evaluation of the modified
C                 Bessel function of the third kind, Journal of
C                 Computational Physics 19, (1975), pp. 324-337.
C***ROUTINES CALLED  D1MACH, DGAMMA, I1MACH, XERMSG
C***REVISION HISTORY  (YYMMDD)
C   790201  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890911  Removed unnecessary intrinsics.  (WRB)
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
C   900326  Removed duplicate information from DESCRIPTION section.
C           (WRB)
C   900328  Added TYPE section.  (WRB)
C   900727  Added EXTERNAL statement.  (WRB)
C   910408  Updated the AUTHOR and REFERENCES sections.  (WRB)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  DBSKNU
C
      INTEGER I, IFLAG, INU, J, K, KK, KODE, KODED, N, NN, NZ
      INTEGER I1MACH
      DOUBLE PRECISION A,AK,A1,A2,B,BK,CC,CK,COEF,CX,DK,DNU,DNU2,ELIM,
     1 ETEST, EX, F, FC, FHS, FK, FKS, FLRX, FMU, FNU, G1, G2, P, PI,
     2 PT, P1, P2, Q, RTHPI, RX, S, SMU, SQK, ST, S1, S2, TM, TOL, T1,
     3 T2, X, X1, X2, Y
      DIMENSION A(160), B(160), Y(*), CC(8)
      DOUBLE PRECISION DGAMMA, D1MACH
      EXTERNAL DGAMMA
      SAVE X1, X2, PI, RTHPI, CC
      DATA X1, X2 / 2.0D0, 17.0D0 /
      DATA PI,RTHPI        / 3.14159265358979D+00, 1.25331413731550D+00/
      DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)
     1                     / 5.77215664901533D-01,-4.20026350340952D-02,
     2-4.21977345555443D-02, 7.21894324666300D-03,-2.15241674114900D-04,
     3-2.01348547807000D-05, 1.13302723200000D-06, 6.11609500000000D-09/
C***FIRST EXECUTABLE STATEMENT  DBSKNU
      KK = -I1MACH(15)
      ELIM = 2.303D0*(KK*D1MACH(5)-3.0D0)
      AK = D1MACH(3)
      TOL = MAX(AK,1.0D-15)
      IF (X.LE.0.0D0) GO TO 350
      IF (FNU.LT.0.0D0) GO TO 360
      IF (KODE.LT.1 .OR. KODE.GT.2) GO TO 370
      IF (N.LT.1) GO TO 380
      NZ = 0
      IFLAG = 0
      KODED = KODE
      RX = 2.0D0/X
      INU = INT(FNU+0.5D0)
      DNU = FNU - INU
      IF (ABS(DNU).EQ.0.5D0) GO TO 120
      DNU2 = 0.0D0
      IF (ABS(DNU).LT.TOL) GO TO 10
      DNU2 = DNU*DNU
   10 CONTINUE
      IF (X.GT.X1) GO TO 120
C
C     SERIES FOR X.LE.X1
C
      A1 = 1.0D0 - DNU
      A2 = 1.0D0 + DNU
      T1 = 1.0D0/DGAMMA(A1)
      T2 = 1.0D0/DGAMMA(A2)
      IF (ABS(DNU).GT.0.1D0) GO TO 40
C     SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
      S = CC(1)
      AK = 1.0D0
      DO 20 K=2,8
        AK = AK*DNU2
        TM = CC(K)*AK
        S = S + TM
        IF (ABS(TM).LT.TOL) GO TO 30
   20 CONTINUE
   30 G1 = -S
      GO TO 50
   40 CONTINUE
      G1 = (T1-T2)/(DNU+DNU)
   50 CONTINUE
      G2 = (T1+T2)*0.5D0
      SMU = 1.0D0
      FC = 1.0D0
      FLRX = LOG(RX)
      FMU = DNU*FLRX
      IF (DNU.EQ.0.0D0) GO TO 60
      FC = DNU*PI
      FC = FC/SIN(FC)
      IF (FMU.NE.0.0D0) SMU = SINH(FMU)/FMU
   60 CONTINUE
      F = FC*(G1*COSH(FMU)+G2*FLRX*SMU)
      FC = EXP(FMU)
      P = 0.5D0*FC/T2
      Q = 0.5D0/(FC*T1)
      AK = 1.0D0
      CK = 1.0D0
      BK = 1.0D0
      S1 = F
      S2 = P
      IF (INU.GT.0 .OR. N.GT.1) GO TO 90
      IF (X.LT.TOL) GO TO 80
      CX = X*X*0.25D0
   70 CONTINUE
      F = (AK*F+P+Q)/(BK-DNU2)
      P = P/(AK-DNU)
      Q = Q/(AK+DNU)
      CK = CK*CX/AK
      T1 = CK*F
      S1 = S1 + T1
      BK = BK + AK + AK + 1.0D0
      AK = AK + 1.0D0
      S = ABS(T1)/(1.0D0+ABS(S1))
      IF (S.GT.TOL) GO TO 70
   80 CONTINUE
      Y(1) = S1
      IF (KODED.EQ.1) RETURN
      Y(1) = S1*EXP(X)
      RETURN
   90 CONTINUE
      IF (X.LT.TOL) GO TO 110
      CX = X*X*0.25D0
  100 CONTINUE
      F = (AK*F+P+Q)/(BK-DNU2)
      P = P/(AK-DNU)
      Q = Q/(AK+DNU)
      CK = CK*CX/AK
      T1 = CK*F
      S1 = S1 + T1
      T2 = CK*(P-AK*F)
      S2 = S2 + T2
      BK = BK + AK + AK + 1.0D0
      AK = AK + 1.0D0
      S = ABS(T1)/(1.0D0+ABS(S1)) + ABS(T2)/(1.0D0+ABS(S2))
      IF (S.GT.TOL) GO TO 100
  110 CONTINUE
      S2 = S2*RX
      IF (KODED.EQ.1) GO TO 170
      F = EXP(X)
      S1 = S1*F
      S2 = S2*F
      GO TO 170
  120 CONTINUE
      COEF = RTHPI/SQRT(X)
      IF (KODED.EQ.2) GO TO 130
      IF (X.GT.ELIM) GO TO 330
      COEF = COEF*EXP(-X)
  130 CONTINUE
      IF (ABS(DNU).EQ.0.5D0) GO TO 340
      IF (X.GT.X2) GO TO 280
C
C     MILLER ALGORITHM FOR X1.LT.X.LE.X2
C
      ETEST = COS(PI*DNU)/(PI*X*TOL)
      FKS = 1.0D0
      FHS = 0.25D0
      FK = 0.0D0
      CK = X + X + 2.0D0
      P1 = 0.0D0
      P2 = 1.0D0
      K = 0
  140 CONTINUE
      K = K + 1
      FK = FK + 1.0D0
      AK = (FHS-DNU2)/(FKS+FK)
      BK = CK/(FK+1.0D0)
      PT = P2
      P2 = BK*P2 - AK*P1
      P1 = PT
      A(K) = AK
      B(K) = BK
      CK = CK + 2.0D0
      FKS = FKS + FK + FK + 1.0D0
      FHS = FHS + FK + FK
      IF (ETEST.GT.FK*P1) GO TO 140
      KK = K
      S = 1.0D0
      P1 = 0.0D0
      P2 = 1.0D0
      DO 150 I=1,K
        PT = P2
        P2 = (B(KK)*P2-P1)/A(KK)
        P1 = PT
        S = S + P2
        KK = KK - 1
  150 CONTINUE
      S1 = COEF*(P2/S)
      IF (INU.GT.0 .OR. N.GT.1) GO TO 160
      GO TO 200
  160 CONTINUE
      S2 = S1*(X+DNU+0.5D0-P1/P2)/X
C
C     FORWARD RECURSION ON THE THREE TERM RECURSION RELATION
C
  170 CONTINUE
      CK = (DNU+DNU+2.0D0)/X
      IF (N.EQ.1) INU = INU - 1
      IF (INU.GT.0) GO TO 180
      IF (N.GT.1) GO TO 200
      S1 = S2
      GO TO 200
  180 CONTINUE
      DO 190 I=1,INU
        ST = S2
        S2 = CK*S2 + S1
        S1 = ST
        CK = CK + RX
  190 CONTINUE
      IF (N.EQ.1) S1 = S2
  200 CONTINUE
      IF (IFLAG.EQ.1) GO TO 220
      Y(1) = S1
      IF (N.EQ.1) RETURN
      Y(2) = S2
      IF (N.EQ.2) RETURN
      DO 210 I=3,N
        Y(I) = CK*Y(I-1) + Y(I-2)
        CK = CK + RX
  210 CONTINUE
      RETURN
C     IFLAG=1 CASES
  220 CONTINUE
      S = -X + LOG(S1)
      Y(1) = 0.0D0
      NZ = 1
      IF (S.LT.-ELIM) GO TO 230
      Y(1) = EXP(S)
      NZ = 0
  230 CONTINUE
      IF (N.EQ.1) RETURN
      S = -X + LOG(S2)
      Y(2) = 0.0D0
      NZ = NZ + 1
      IF (S.LT.-ELIM) GO TO 240
      NZ = NZ - 1
      Y(2) = EXP(S)
  240 CONTINUE
      IF (N.EQ.2) RETURN
      KK = 2
      IF (NZ.LT.2) GO TO 260
      DO 250 I=3,N
        KK = I
        ST = S2
        S2 = CK*S2 + S1
        S1 = ST
        CK = CK + RX
        S = -X + LOG(S2)
        NZ = NZ + 1
        Y(I) = 0.0D0
        IF (S.LT.-ELIM) GO TO 250
        Y(I) = EXP(S)
        NZ = NZ - 1
        GO TO 260
  250 CONTINUE
      RETURN
  260 CONTINUE
      IF (KK.EQ.N) RETURN
      S2 = S2*CK + S1
      CK = CK + RX
      KK = KK + 1
      Y(KK) = EXP(-X+LOG(S2))
      IF (KK.EQ.N) RETURN
      KK = KK + 1
      DO 270 I=KK,N
        Y(I) = CK*Y(I-1) + Y(I-2)
        CK = CK + RX
  270 CONTINUE
      RETURN
C
C     ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2
C
C     IFLAG=0 MEANS NO UNDERFLOW OCCURRED
C     IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH
C     KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD
C     RECURSION
  280 CONTINUE
      NN = 2
      IF (INU.EQ.0 .AND. N.EQ.1) NN = 1
      DNU2 = DNU + DNU
      FMU = 0.0D0
      IF (ABS(DNU2).LT.TOL) GO TO 290
      FMU = DNU2*DNU2
  290 CONTINUE
      EX = X*8.0D0
      S2 = 0.0D0
      DO 320 K=1,NN
        S1 = S2
        S = 1.0D0
        AK = 0.0D0
        CK = 1.0D0
        SQK = 1.0D0
        DK = EX
        DO 300 J=1,30
          CK = CK*(FMU-SQK)/DK
          S = S + CK
          DK = DK + EX
          AK = AK + 8.0D0
          SQK = SQK + AK
          IF (ABS(CK).LT.TOL) GO TO 310
  300   CONTINUE
  310   S2 = S*COEF
        FMU = FMU + 8.0D0*DNU + 4.0D0
  320 CONTINUE
      IF (NN.GT.1) GO TO 170
      S1 = S2
      GO TO 200
  330 CONTINUE
      KODED = 2
      IFLAG = 1
      GO TO 120
C
C     FNU=HALF ODD INTEGER CASE
C
  340 CONTINUE
      S1 = COEF
      S2 = COEF
      GO TO 170
C
C
  350 CALL XERMSG ('SLATEC', 'DBSKNU', 'X NOT GREATER THAN ZERO', 2, 1)
      RETURN
  360 CALL XERMSG ('SLATEC', 'DBSKNU', 'FNU NOT ZERO OR POSITIVE', 2,
     +   1)
      RETURN
  370 CALL XERMSG ('SLATEC', 'DBSKNU', 'KODE NOT 1 OR 2', 2, 1)
      RETURN
  380 CALL XERMSG ('SLATEC', 'DBSKNU', 'N NOT GREATER THAN 0', 2, 1)
      RETURN
      END