1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
*DECK DBSYNU
SUBROUTINE DBSYNU (X, FNU, N, Y)
C***BEGIN PROLOGUE DBSYNU
C***SUBSIDIARY
C***PURPOSE Subsidiary to DBESY
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (BESYNU-S, DBSYNU-D)
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Abstract **** A DOUBLE PRECISION routine ****
C DBSYNU computes N member sequences of Y Bessel functions
C Y/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
C positive X. Equations of the references are implemented on
C small orders DNU for Y/SUB(DNU)/(X) and Y/SUB(DNU+1)/(X).
C Forward recursion with the three term recursion relation
C generates higher orders FNU+I-1, I=1,...,N.
C
C To start the recursion FNU is normalized to the interval
C -0.5.LE.DNU.LT.0.5. A special form of the power series is
C implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
C K Bessel function in terms of the confluent hypergeometric
C function U(FNU+0.5,2*FNU+1,I*X) is implemented on X1.LT.X.LE.X
C Here I is the complex number SQRT(-1.).
C For X.GT.X2, the asymptotic expansion for large X is used.
C When FNU is a half odd integer, a special formula for
C DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.
C
C The maximum number of significant digits obtainable
C is the smaller of 14 and the number of digits carried in
C DOUBLE PRECISION arithmetic.
C
C DBSYNU assumes that a significant digit SINH function is
C available.
C
C Description of Arguments
C
C INPUT
C X - X.GT.0.0D0
C FNU - Order of initial Y function, FNU.GE.0.0D0
C N - Number of members of the sequence, N.GE.1
C
C OUTPUT
C Y - A vector whose first N components contain values
C for the sequence Y(I)=Y/SUB(FNU+I-1), I=1,N.
C
C Error Conditions
C Improper input arguments - a fatal error
C Overflow - a fatal error
C
C***SEE ALSO DBESY
C***REFERENCES N. M. Temme, On the numerical evaluation of the ordinary
C Bessel function of the second kind, Journal of
C Computational Physics 21, (1976), pp. 343-350.
C N. M. Temme, On the numerical evaluation of the modified
C Bessel function of the third kind, Journal of
C Computational Physics 19, (1975), pp. 324-337.
C***ROUTINES CALLED D1MACH, DGAMMA, XERMSG
C***REVISION HISTORY (YYMMDD)
C 800501 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 900328 Added TYPE section. (WRB)
C 900727 Added EXTERNAL statement. (WRB)
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DBSYNU
C
INTEGER I, INU, J, K, KK, N, NN
DOUBLE PRECISION A,AK,ARG,A1,A2,BK,CB,CBK,CC,CCK,CK,COEF,CPT,
1 CP1, CP2, CS, CS1, CS2, CX, DNU, DNU2, ETEST, ETX, F, FC, FHS,
2 FK, FKS, FLRX, FMU, FN, FNU, FX, G, G1, G2, HPI, P, PI, PT, Q,
3 RB, RBK, RCK, RELB, RPT, RP1, RP2, RS, RS1, RS2, RTHPI, RX, S,
4 SA, SB, SMU, SS, ST, S1, S2, TB, TM, TOL, T1, T2, X, X1, X2, Y
DIMENSION A(120), RB(120), CB(120), Y(*), CC(8)
DOUBLE PRECISION DGAMMA, D1MACH
EXTERNAL DGAMMA
SAVE X1, X2,PI, RTHPI, HPI, CC
DATA X1, X2 / 3.0D0, 20.0D0 /
DATA PI,RTHPI / 3.14159265358979D+00, 7.97884560802865D-01/
DATA HPI / 1.57079632679490D+00/
DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)
1 / 5.77215664901533D-01,-4.20026350340952D-02,
2-4.21977345555443D-02, 7.21894324666300D-03,-2.15241674114900D-04,
3-2.01348547807000D-05, 1.13302723200000D-06, 6.11609500000000D-09/
C***FIRST EXECUTABLE STATEMENT DBSYNU
AK = D1MACH(3)
TOL = MAX(AK,1.0D-15)
IF (X.LE.0.0D0) GO TO 270
IF (FNU.LT.0.0D0) GO TO 280
IF (N.LT.1) GO TO 290
RX = 2.0D0/X
INU = INT(FNU+0.5D0)
DNU = FNU - INU
IF (ABS(DNU).EQ.0.5D0) GO TO 260
DNU2 = 0.0D0
IF (ABS(DNU).LT.TOL) GO TO 10
DNU2 = DNU*DNU
10 CONTINUE
IF (X.GT.X1) GO TO 120
C
C SERIES FOR X.LE.X1
C
A1 = 1.0D0 - DNU
A2 = 1.0D0 + DNU
T1 = 1.0D0/DGAMMA(A1)
T2 = 1.0D0/DGAMMA(A2)
IF (ABS(DNU).GT.0.1D0) GO TO 40
C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
S = CC(1)
AK = 1.0D0
DO 20 K=2,8
AK = AK*DNU2
TM = CC(K)*AK
S = S + TM
IF (ABS(TM).LT.TOL) GO TO 30
20 CONTINUE
30 G1 = -(S+S)
GO TO 50
40 CONTINUE
G1 = (T1-T2)/DNU
50 CONTINUE
G2 = T1 + T2
SMU = 1.0D0
FC = 1.0D0/PI
FLRX = LOG(RX)
FMU = DNU*FLRX
TM = 0.0D0
IF (DNU.EQ.0.0D0) GO TO 60
TM = SIN(DNU*HPI)/DNU
TM = (DNU+DNU)*TM*TM
FC = DNU/SIN(DNU*PI)
IF (FMU.NE.0.0D0) SMU = SINH(FMU)/FMU
60 CONTINUE
F = FC*(G1*COSH(FMU)+G2*FLRX*SMU)
FX = EXP(FMU)
P = FC*T1*FX
Q = FC*T2/FX
G = F + TM*Q
AK = 1.0D0
CK = 1.0D0
BK = 1.0D0
S1 = G
S2 = P
IF (INU.GT.0 .OR. N.GT.1) GO TO 90
IF (X.LT.TOL) GO TO 80
CX = X*X*0.25D0
70 CONTINUE
F = (AK*F+P+Q)/(BK-DNU2)
P = P/(AK-DNU)
Q = Q/(AK+DNU)
G = F + TM*Q
CK = -CK*CX/AK
T1 = CK*G
S1 = S1 + T1
BK = BK + AK + AK + 1.0D0
AK = AK + 1.0D0
S = ABS(T1)/(1.0D0+ABS(S1))
IF (S.GT.TOL) GO TO 70
80 CONTINUE
Y(1) = -S1
RETURN
90 CONTINUE
IF (X.LT.TOL) GO TO 110
CX = X*X*0.25D0
100 CONTINUE
F = (AK*F+P+Q)/(BK-DNU2)
P = P/(AK-DNU)
Q = Q/(AK+DNU)
G = F + TM*Q
CK = -CK*CX/AK
T1 = CK*G
S1 = S1 + T1
T2 = CK*(P-AK*G)
S2 = S2 + T2
BK = BK + AK + AK + 1.0D0
AK = AK + 1.0D0
S = ABS(T1)/(1.0D0+ABS(S1)) + ABS(T2)/(1.0D0+ABS(S2))
IF (S.GT.TOL) GO TO 100
110 CONTINUE
S2 = -S2*RX
S1 = -S1
GO TO 160
120 CONTINUE
COEF = RTHPI/SQRT(X)
IF (X.GT.X2) GO TO 210
C
C MILLER ALGORITHM FOR X1.LT.X.LE.X2
C
ETEST = COS(PI*DNU)/(PI*X*TOL)
FKS = 1.0D0
FHS = 0.25D0
FK = 0.0D0
RCK = 2.0D0
CCK = X + X
RP1 = 0.0D0
CP1 = 0.0D0
RP2 = 1.0D0
CP2 = 0.0D0
K = 0
130 CONTINUE
K = K + 1
FK = FK + 1.0D0
AK = (FHS-DNU2)/(FKS+FK)
PT = FK + 1.0D0
RBK = RCK/PT
CBK = CCK/PT
RPT = RP2
CPT = CP2
RP2 = RBK*RPT - CBK*CPT - AK*RP1
CP2 = CBK*RPT + RBK*CPT - AK*CP1
RP1 = RPT
CP1 = CPT
RB(K) = RBK
CB(K) = CBK
A(K) = AK
RCK = RCK + 2.0D0
FKS = FKS + FK + FK + 1.0D0
FHS = FHS + FK + FK
PT = MAX(ABS(RP1),ABS(CP1))
FC = (RP1/PT)**2 + (CP1/PT)**2
PT = PT*SQRT(FC)*FK
IF (ETEST.GT.PT) GO TO 130
KK = K
RS = 1.0D0
CS = 0.0D0
RP1 = 0.0D0
CP1 = 0.0D0
RP2 = 1.0D0
CP2 = 0.0D0
DO 140 I=1,K
RPT = RP2
CPT = CP2
RP2 = (RB(KK)*RPT-CB(KK)*CPT-RP1)/A(KK)
CP2 = (CB(KK)*RPT+RB(KK)*CPT-CP1)/A(KK)
RP1 = RPT
CP1 = CPT
RS = RS + RP2
CS = CS + CP2
KK = KK - 1
140 CONTINUE
PT = MAX(ABS(RS),ABS(CS))
FC = (RS/PT)**2 + (CS/PT)**2
PT = PT*SQRT(FC)
RS1 = (RP2*(RS/PT)+CP2*(CS/PT))/PT
CS1 = (CP2*(RS/PT)-RP2*(CS/PT))/PT
FC = HPI*(DNU-0.5D0) - X
P = COS(FC)
Q = SIN(FC)
S1 = (CS1*Q-RS1*P)*COEF
IF (INU.GT.0 .OR. N.GT.1) GO TO 150
Y(1) = S1
RETURN
150 CONTINUE
PT = MAX(ABS(RP2),ABS(CP2))
FC = (RP2/PT)**2 + (CP2/PT)**2
PT = PT*SQRT(FC)
RPT = DNU + 0.5D0 - (RP1*(RP2/PT)+CP1*(CP2/PT))/PT
CPT = X - (CP1*(RP2/PT)-RP1*(CP2/PT))/PT
CS2 = CS1*CPT - RS1*RPT
RS2 = RPT*CS1 + RS1*CPT
S2 = (RS2*Q+CS2*P)*COEF/X
C
C FORWARD RECURSION ON THE THREE TERM RECURSION RELATION
C
160 CONTINUE
CK = (DNU+DNU+2.0D0)/X
IF (N.EQ.1) INU = INU - 1
IF (INU.GT.0) GO TO 170
IF (N.GT.1) GO TO 190
S1 = S2
GO TO 190
170 CONTINUE
DO 180 I=1,INU
ST = S2
S2 = CK*S2 - S1
S1 = ST
CK = CK + RX
180 CONTINUE
IF (N.EQ.1) S1 = S2
190 CONTINUE
Y(1) = S1
IF (N.EQ.1) RETURN
Y(2) = S2
IF (N.EQ.2) RETURN
DO 200 I=3,N
Y(I) = CK*Y(I-1) - Y(I-2)
CK = CK + RX
200 CONTINUE
RETURN
C
C ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2
C
210 CONTINUE
NN = 2
IF (INU.EQ.0 .AND. N.EQ.1) NN = 1
DNU2 = DNU + DNU
FMU = 0.0D0
IF (ABS(DNU2).LT.TOL) GO TO 220
FMU = DNU2*DNU2
220 CONTINUE
ARG = X - HPI*(DNU+0.5D0)
SA = SIN(ARG)
SB = COS(ARG)
ETX = 8.0D0*X
DO 250 K=1,NN
S1 = S2
T2 = (FMU-1.0D0)/ETX
SS = T2
RELB = TOL*ABS(T2)
T1 = ETX
S = 1.0D0
FN = 1.0D0
AK = 0.0D0
DO 230 J=1,13
T1 = T1 + ETX
AK = AK + 8.0D0
FN = FN + AK
T2 = -T2*(FMU-FN)/T1
S = S + T2
T1 = T1 + ETX
AK = AK + 8.0D0
FN = FN + AK
T2 = T2*(FMU-FN)/T1
SS = SS + T2
IF (ABS(T2).LE.RELB) GO TO 240
230 CONTINUE
240 S2 = COEF*(S*SA+SS*SB)
FMU = FMU + 8.0D0*DNU + 4.0D0
TB = SA
SA = -SB
SB = TB
250 CONTINUE
IF (NN.GT.1) GO TO 160
S1 = S2
GO TO 190
C
C FNU=HALF ODD INTEGER CASE
C
260 CONTINUE
COEF = RTHPI/SQRT(X)
S1 = COEF*SIN(X)
S2 = -COEF*COS(X)
GO TO 160
C
C
270 CALL XERMSG ('SLATEC', 'DBSYNU', 'X NOT GREATER THAN ZERO', 2, 1)
RETURN
280 CALL XERMSG ('SLATEC', 'DBSYNU', 'FNU NOT ZERO OR POSITIVE', 2,
+ 1)
RETURN
290 CALL XERMSG ('SLATEC', 'DBSYNU', 'N NOT GREATER THAN 0', 2, 1)
RETURN
END
|