1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
*DECK DEXINT
SUBROUTINE DEXINT (X, N, KODE, M, TOL, EN, NZ, IERR)
C***BEGIN PROLOGUE DEXINT
C***PURPOSE Compute an M member sequence of exponential integrals
C E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.
C***LIBRARY SLATEC
C***CATEGORY C5
C***TYPE DOUBLE PRECISION (EXINT-S, DEXINT-D)
C***KEYWORDS EXPONENTIAL INTEGRAL, SPECIAL FUNCTIONS
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C DEXINT computes M member sequences of exponential integrals
C E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0. The
C exponential integral is defined by
C
C E(N,X)=integral on (1,infinity) of EXP(-XT)/T**N
C
C where X=0.0 and N=1 cannot occur simultaneously. Formulas
C and notation are found in the NBS Handbook of Mathematical
C Functions (ref. 1).
C
C The power series is implemented for X .LE. XCUT and the
C confluent hypergeometric representation
C
C E(A,X) = EXP(-X)*(X**(A-1))*U(A,A,X)
C
C is computed for X .GT. XCUT. Since sequences are computed in
C a stable fashion by recurring away from X, A is selected as
C the integer closest to X within the constraint N .LE. A .LE.
C N+M-1. For the U computation, A is further modified to be the
C nearest even integer. Indices are carried forward or
C backward by the two term recursion relation
C
C K*E(K+1,X) + X*E(K,X) = EXP(-X)
C
C once E(A,X) is computed. The U function is computed by means
C of the backward recursive Miller algorithm applied to the
C three term contiguous relation for U(A+K,A,X), K=0,1,...
C This produces accurate ratios and determines U(A+K,A,X), and
C hence E(A,X), to within a multiplicative constant C.
C Another contiguous relation applied to C*U(A,A,X) and
C C*U(A+1,A,X) gets C*U(A+1,A+1,X), a quantity proportional to
C E(A+1,X). The normalizing constant C is obtained from the
C two term recursion relation above with K=A.
C
C The maximum number of significant digits obtainable
C is the smaller of 14 and the number of digits carried in
C double precision arithmetic.
C
C Description of Arguments
C
C Input * X and TOL are double precision *
C X X .GT. 0.0 for N=1 and X .GE. 0.0 for N .GE. 2
C N order of the first member of the sequence, N .GE. 1
C (X=0.0 and N=1 is an error)
C KODE a selection parameter for scaled values
C KODE=1 returns E(N+K,X), K=0,1,...,M-1.
C =2 returns EXP(X)*E(N+K,X), K=0,1,...,M-1.
C M number of exponential integrals in the sequence,
C M .GE. 1
C TOL relative accuracy wanted, ETOL .LE. TOL .LE. 0.1
C ETOL is the larger of double precision unit
C roundoff = D1MACH(4) and 1.0D-18
C
C Output * EN is a double precision vector *
C EN a vector of dimension at least M containing values
C EN(K) = E(N+K-1,X) or EXP(X)*E(N+K-1,X), K=1,M
C depending on KODE
C NZ underflow indicator
C NZ=0 a normal return
C NZ=M X exceeds XLIM and an underflow occurs.
C EN(K)=0.0D0 , K=1,M returned on KODE=1
C IERR error flag
C IERR=0, normal return, computation completed
C IERR=1, input error, no computation
C IERR=2, error, no computation
C algorithm termination condition not met
C
C***REFERENCES M. Abramowitz and I. A. Stegun, Handbook of
C Mathematical Functions, NBS AMS Series 55, U.S. Dept.
C of Commerce, 1955.
C D. E. Amos, Computation of exponential integrals, ACM
C Transactions on Mathematical Software 6, (1980),
C pp. 365-377 and pp. 420-428.
C***ROUTINES CALLED D1MACH, DPSIXN, I1MACH
C***REVISION HISTORY (YYMMDD)
C 800501 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 910408 Updated the REFERENCES section. (WRB)
C 920207 Updated with code with a revision date of 880811 from
C D. Amos. Included correction of argument list. (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DEXINT
DOUBLE PRECISION A,AA,AAMS,AH,AK,AT,B,BK,BT,CC,CNORM,CT,EM,EMX,EN,
1 ETOL,FNM,FX,PT,P1,P2,S,TOL,TX,X,XCUT,XLIM,XTOL,Y,
2 YT,Y1,Y2
DOUBLE PRECISION D1MACH,DPSIXN
INTEGER I,IC,ICASE,ICT,IERR,IK,IND,IX,I1M,JSET,K,KK,KN,KODE,KS,M,
1 ML,MU,N,ND,NM,NZ
INTEGER I1MACH
DIMENSION EN(*), A(99), B(99), Y(2)
SAVE XCUT
DATA XCUT / 2.0D0 /
C***FIRST EXECUTABLE STATEMENT DEXINT
IERR = 0
NZ = 0
ETOL = MAX(D1MACH(4),0.5D-18)
IF (X.LT.0.0D0) IERR = 1
IF (N.LT.1) IERR = 1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR = 1
IF (M.LT.1) IERR = 1
IF (TOL.LT.ETOL .OR. TOL.GT.0.1D0) IERR = 1
IF (X.EQ.0.0D0 .AND. N.EQ.1) IERR = 1
IF(IERR.NE.0) RETURN
I1M = -I1MACH(15)
PT = 2.3026D0*I1M*D1MACH(5)
XLIM = PT - 6.907755D0
BT = PT + (N+M-1)
IF (BT.GT.1000.0D0) XLIM = PT - LOG(BT)
C
IF (X.GT.XCUT) GO TO 100
IF (X.EQ.0.0D0 .AND. N.GT.1) GO TO 80
C-----------------------------------------------------------------------
C SERIES FOR E(N,X) FOR X.LE.XCUT
C-----------------------------------------------------------------------
TX = X + 0.5D0
IX = TX
C-----------------------------------------------------------------------
C ICASE=1 MEANS INTEGER CLOSEST TO X IS 2 AND N=1
C ICASE=2 MEANS INTEGER CLOSEST TO X IS 0,1, OR 2 AND N.GE.2
C-----------------------------------------------------------------------
ICASE = 2
IF (IX.GT.N) ICASE = 1
NM = N - ICASE + 1
ND = NM + 1
IND = 3 - ICASE
MU = M - IND
ML = 1
KS = ND
FNM = NM
S = 0.0D0
XTOL = 3.0D0*TOL
IF (ND.EQ.1) GO TO 10
XTOL = 0.3333D0*TOL
S = 1.0D0/FNM
10 CONTINUE
AA = 1.0D0
AK = 1.0D0
IC = 35
IF (X.LT.ETOL) IC = 1
DO 50 I=1,IC
AA = -AA*X/AK
IF (I.EQ.NM) GO TO 30
S = S - AA/(AK-FNM)
IF (ABS(AA).LE.XTOL*ABS(S)) GO TO 20
AK = AK + 1.0D0
GO TO 50
20 CONTINUE
IF (I.LT.2) GO TO 40
IF (ND-2.GT.I .OR. I.GT.ND-1) GO TO 60
AK = AK + 1.0D0
GO TO 50
30 S = S + AA*(-LOG(X)+DPSIXN(ND))
XTOL = 3.0D0*TOL
40 AK = AK + 1.0D0
50 CONTINUE
IF (IC.NE.1) GO TO 340
60 IF (ND.EQ.1) S = S + (-LOG(X)+DPSIXN(1))
IF (KODE.EQ.2) S = S*EXP(X)
EN(1) = S
EMX = 1.0D0
IF (M.EQ.1) GO TO 70
EN(IND) = S
AA = KS
IF (KODE.EQ.1) EMX = EXP(-X)
GO TO (220, 240), ICASE
70 IF (ICASE.EQ.2) RETURN
IF (KODE.EQ.1) EMX = EXP(-X)
EN(1) = (EMX-S)/X
RETURN
80 CONTINUE
DO 90 I=1,M
EN(I) = 1.0D0/(N+I-2)
90 CONTINUE
RETURN
C-----------------------------------------------------------------------
C BACKWARD RECURSIVE MILLER ALGORITHM FOR
C E(N,X)=EXP(-X)*(X**(N-1))*U(N,N,X)
C WITH RECURSION AWAY FROM N=INTEGER CLOSEST TO X.
C U(A,B,X) IS THE SECOND CONFLUENT HYPERGEOMETRIC FUNCTION
C-----------------------------------------------------------------------
100 CONTINUE
EMX = 1.0D0
IF (KODE.EQ.2) GO TO 130
IF (X.LE.XLIM) GO TO 120
NZ = M
DO 110 I=1,M
EN(I) = 0.0D0
110 CONTINUE
RETURN
120 EMX = EXP(-X)
130 CONTINUE
TX = X + 0.5D0
IX = TX
KN = N + M - 1
IF (KN.LE.IX) GO TO 140
IF (N.LT.IX .AND. IX.LT.KN) GO TO 170
IF (N.GE.IX) GO TO 160
GO TO 340
140 ICASE = 1
KS = KN
ML = M - 1
MU = -1
IND = M
IF (KN.GT.1) GO TO 180
150 KS = 2
ICASE = 3
GO TO 180
160 ICASE = 2
IND = 1
KS = N
MU = M - 1
IF (N.GT.1) GO TO 180
IF (KN.EQ.1) GO TO 150
IX = 2
170 ICASE = 1
KS = IX
ML = IX - N
IND = ML + 1
MU = KN - IX
180 CONTINUE
IK = KS/2
AH = IK
JSET = 1 + KS - (IK+IK)
C-----------------------------------------------------------------------
C START COMPUTATION FOR
C EN(IND) = C*U( A , A ,X) JSET=1
C EN(IND) = C*U(A+1,A+1,X) JSET=2
C FOR AN EVEN INTEGER A.
C-----------------------------------------------------------------------
IC = 0
AA = AH + AH
AAMS = AA - 1.0D0
AAMS = AAMS*AAMS
TX = X + X
FX = TX + TX
AK = AH
XTOL = TOL
IF (TOL.LE.1.0D-3) XTOL = 20.0D0*TOL
CT = AAMS + FX*AH
EM = (AH+1.0D0)/((X+AA)*XTOL*SQRT(CT))
BK = AA
CC = AH*AH
C-----------------------------------------------------------------------
C FORWARD RECURSION FOR P(IC),P(IC+1) AND INDEX IC FOR BACKWARD
C RECURSION
C-----------------------------------------------------------------------
P1 = 0.0D0
P2 = 1.0D0
190 CONTINUE
IF (IC.EQ.99) GO TO 340
IC = IC + 1
AK = AK + 1.0D0
AT = BK/(BK+AK+CC+IC)
BK = BK + AK + AK
A(IC) = AT
BT = (AK+AK+X)/(AK+1.0D0)
B(IC) = BT
PT = P2
P2 = BT*P2 - AT*P1
P1 = PT
CT = CT + FX
EM = EM*AT*(1.0D0-TX/CT)
IF (EM*(AK+1.0D0).GT.P1*P1) GO TO 190
ICT = IC
KK = IC + 1
BT = TX/(CT+FX)
Y2 = (BK/(BK+CC+KK))*(P1/P2)*(1.0D0-BT+0.375D0*BT*BT)
Y1 = 1.0D0
C-----------------------------------------------------------------------
C BACKWARD RECURRENCE FOR
C Y1= C*U( A ,A,X)
C Y2= C*(A/(1+A/2))*U(A+1,A,X)
C-----------------------------------------------------------------------
DO 200 K=1,ICT
KK = KK - 1
YT = Y1
Y1 = (B(KK)*Y1-Y2)/A(KK)
Y2 = YT
200 CONTINUE
C-----------------------------------------------------------------------
C THE CONTIGUOUS RELATION
C X*U(B,C+1,X)=(C-B)*U(B,C,X)+U(B-1,C,X)
C WITH B=A+1 , C=A IS USED FOR
C Y(2) = C * U(A+1,A+1,X)
C X IS INCORPORATED INTO THE NORMALIZING RELATION
C-----------------------------------------------------------------------
PT = Y2/Y1
CNORM = 1.0E0 - PT*(AH+1.0E0)/AA
Y(1) = 1.0E0/(CNORM*AA+X)
Y(2) = CNORM*Y(1)
IF (ICASE.EQ.3) GO TO 210
EN(IND) = EMX*Y(JSET)
IF (M.EQ.1) RETURN
AA = KS
GO TO (220, 240), ICASE
C-----------------------------------------------------------------------
C RECURSION SECTION N*E(N+1,X) + X*E(N,X)=EMX
C-----------------------------------------------------------------------
210 EN(1) = EMX*(1.0E0-Y(1))/X
RETURN
220 K = IND - 1
DO 230 I=1,ML
AA = AA - 1.0D0
EN(K) = (EMX-AA*EN(K+1))/X
K = K - 1
230 CONTINUE
IF (MU.LE.0) RETURN
AA = KS
240 K = IND
DO 250 I=1,MU
EN(K+1) = (EMX-X*EN(K))/AA
AA = AA + 1.0D0
K = K + 1
250 CONTINUE
RETURN
340 CONTINUE
IERR = 2
RETURN
END
|