1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
C/MEMBR ADD NAME=DSORT,SSI=0
c Copyright INRIA
subroutine dsort(count,n,index)
c
c!purpose
c dsort sort double precision array,maintaining an index array
c
c!calling sequence
c subroutine dsort(count,n,index)
c integer n,index(n)
c double precision count(n)
c
c count : array to be sorted
c n :size of count and index
c index : array containing on return index of sorted array
c
c!method
c quick sort metjod is used
c!restriction
c n must be less than 2**(50/2) ! due to lengh of work space mark
c!
dimension mark(50),index(n)
double precision count(n),av,x
c set index array to original order .
do 10 i=1,n
index(i)=i
10 continue
c check that a trivial case has not been entered .
if(n.eq.1)goto 200
if(n.ge.1)go to 30
goto 200
c 'm' is the length of segment which is short enough to enter
c the final sorting routine. it may be easily changed.
30 m=12
c set up initial values.
la=2
is=1
if=n
do 190 mloop=1,n
c if segment is short enough sort with final sorting routine .
ifka=if-is
if((ifka+1).gt.m)goto 70
c********* final sorting ***
c ( a simple bubble sort )
is1=is+1
do 60 j=is1,if
i=j
40 if(count(i-1).gt.count(i))goto 60
if(count(i-1).lt.count(i))goto 50
if(index(i-1).lt.index(i))goto 60
50 av=count(i-1)
count(i-1)=count(i)
count(i)=av
int=index(i-1)
index(i-1)=index(i)
index(i)=int
i=i-1
if(i.gt.is)goto 40
60 continue
la=la-2
goto 170
c ******* quicksort ********
c select the number in the central position in the segment as
c the test number.replace it with the number from the segment's
c highest address.
70 iy=(is+if)/2
x=count(iy)
intest=index(iy)
count(iy)=count(if)
index(iy)=index(if)
c the markers 'i' and 'ifk' are used for the beginning and end
c of the section not so far tested against the present value
c of x .
k=1
ifk=if
c we alternate between the outer loop that increases i and the
c inner loop that reduces ifk, moving numbers and indices as
c necessary, until they meet .
do 110 i=is,if
if(x.lt.count(i))goto 110
if(x.gt.count(i))goto 80
if(intest.gt.index(i))goto 110
80 if(i.ge.ifk)goto 120
count(ifk)=count(i)
index(ifk)=index(i)
k1=k
do 100 k=k1,ifka
ifk=if-k
if(count(ifk).lt.x)goto 100
if(count(ifk).gt.x)goto 90
if(intest.le.index(ifk))goto 100
90 if(i.ge.ifk)goto 130
count(i)=count(ifk)
index(i)=index(ifk)
go to 110
100 continue
goto 120
110 continue
c return the test number to the position marked by the marker
c which did not move last. it divides the initial segment into
c 2 parts. any element in the first part is less than or equal
c to any element in the second part, and they may now be sorted
c independently .
120 count(ifk)=x
index(ifk)=intest
ip=ifk
goto 140
130 count(i)=x
index(i)=intest
ip=i
c store the longer subdivision in workspace.
140 if((ip-is).gt.(if-ip))goto 150
mark(la)=if
mark(la-1)=ip+1
if=ip-1
goto 160
150 mark(la)=ip-1
mark(la-1)=is
is=ip+1
c find the length of the shorter subdivision.
160 lngth=if-is
if(lngth.le.0)goto 180
c if it contains more than one element supply it with workspace .
la=la+2
goto 190
170 if(la.le.0)goto 200
c obtain the address of the shortest segment awaiting quicksort
180 if=mark(la)
is=mark(la-1)
190 continue
200 return
end
|