1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
*
* This code comes from the NSWC fortran library with slight
* modifications from Bruno Pincon
*
SUBROUTINE SPFIT (X, Y, WGT, M, BREAK, L, Z, A, WK, IERR)
implicit none
integer M, L, IERR
DOUBLE PRECISION X(M), Y(M), WGT(M), BREAK(L)
DOUBLE PRECISION Z(*), A(*), WK(*)
C-----------------------------------------------------------------------
C WEIGHTED LEAST SQUARES CUBIC SPLINE FITTING
C-----------------------------------------------------------------------
integer N, J, K, LA, LW, LQ, LM1
DOUBLE PRECISION TEMP(20), DX, B, C
C---------------------
N = L + 2
C
C DEFINE THE KNOTS FOR THE B-SPLINES
C
WK(1) = BREAK(1)
WK(2) = BREAK(1)
WK(3) = BREAK(1)
WK(4) = BREAK(1)
do J = 2,L ! the conditions break(k) < break(k+1) are
WK(J + 3) = BREAK(J) ! verified in the interface
enddo
WK(L + 4) = BREAK(L)
WK(L + 5) = BREAK(L)
WK(L + 6) = BREAK(L)
C
C OBTAIN THE B-SPLINE COEFFICIENTS OF THE LEAST SQUARES FIT
C
LA = N + 5 ! start indices (in wk) for the others working area
LW = LA + N !
LQ = LW + N !
CALL BSLSQ (X, Y, WGT, M, WK(1), N, 4, WK(LA),
* WK(LW), WK(LQ), IERR)
*
* pour BSLSQ : IERR =-1 not enought points for the fit
* IERR = 0 OK
* IERR = 1 non uniqness of the solution (but a solution is computed)
*
IF (IERR .GE. 0) then
C OBTAIN THE COEFFICIENTS OF THE FIT IN TAYLOR SERIES FORM
CALL BSPP (WK(1), WK(LA), N, 4, BREAK,
* WK(LQ), LM1, TEMP)
K = LQ
DO J = 1,LM1
Z(J) = WK(K)
A(J) = WK(K + 1)
K = K + 4
enddo
! a trick to get the spline value (Z(L)) and first derivative
! (A(L)) on the last breakpoint : the last polynomial piece
! has the form Z(LM1) + A(LM1)(x- break(l-1)) + B(LM1)(...)
DX = BREAK(L) - BREAK(L-1)
B = WK(LQ + 4*(L-2) + 2)
C = WK(LQ + 4*(L-2) + 3)
Z(L) = Z(LM1) + DX*(A(LM1) + DX*(B + DX*C))
A(L) = A(LM1) + DX*( 2.d0*B + DX*3.d0*C)
endif
END
SUBROUTINE BSLSQ (TAU, GTAU, WGT, NTAU, T, N, K, A, WK, Q, IERR)
implicit none
integer NTAU, K, N, IERR
DOUBLE PRECISION TAU(NTAU), GTAU(NTAU), WGT(NTAU)
DOUBLE PRECISION T(*), A(N), WK(N), Q(K,N)
C-----------------------------------------------------------------------
C
C BSLSQ PRODUCES THE B-SPLINE COEFFICIENTS OF A PIECEWISE
C POLYNOMIAL P(X) OF ORDER K WHICH MINIMIZES
C
C SUM (WGT(J)*(P(TAU(J)) - GTAU(J))**2).
C
C
C INPUT ...
C
C TAU ARRAY OF LENGTH NTAU CONTAINING DATA POINT ABSCISSAE.
C GTAU ARRAY OF LENGTH NTAU CONTAINING DATA POINT ORDINATES.
C WGT ARRAY OF LENGTH NTAU CONTAINING THE WEIGHTS.
C NTAU NUMBER OF DATA POINTS TO BE FITTED.
C T KNOT SEQUENCE OF LENGTH N + K.
C N DIMENSION OF THE PIECEWISE POLYNOMIAL SPACE.
C K ORDER OF THE B-SPLINES.
C
C OUTPUT ...
C
C A ARRAY OF LENGTH N CONTAINING THE B-SPLINE COEFFICIENTS
C OF THE L2 APPROXIMATION.
C
C IERR INTEGER REPORTING THE STATUS OF THE RESULTS ...
C
C 0 THE COEFFICIENT MATRIX IS NONSIGULAR. THE
C UNIQUE LEAST SQUARES SOLUTION WAS OBTAINED.
C 1 THE COEFFICIENT MATRIX IS SINGULAR. A
C LEAST SQUARES SOLUTION WAS OBTAINED.
C -1 INPUT ERRORS WERE DETECTED.
C
C-----------------------------------------------------------------------
C
integer I, J, JJ, L, LEFT, LEFTMK, MM, ntau_count
double precision dw
external isearch
integer isearch
* some modifs :
* 1/ to avoid the sort on the datas points use a dicho search to get
* the interval LEFT
* 2/ all the datas points outside the interval definition of the spline
* ([T(K),T(N+1)]) or with a non positive weight are not taken into acount
* in the fit
*
*
* Note: the breakpoints goes to T(K) until T(N+1) (N+1-K+1 points)
* T(K) is the first break point (T(K) = X(1), ..., T(I) = X(I-K+1)
* T(N+1) = T(L+K-1) = X(L) is the last break point
C
do J = 1,N
A(J) = 0.D0
do I = 1,K
Q(I,J) = 0.d0
enddo
enddo
C
ntau_count = 0
LEFT = K
DO L = 1,NTAU
if ( TAU(L).ge.T(K) .and. TAU(L).le.T(N+1) ! added by Bruno
$ .and. WGT(L) .gt. 0.d0 ) then
ntau_count = ntau_count + 1
* find the index left such that T(LEFT) <= TAU(L) <= T(LEFT+1) (modified by Bruno)
LEFT = isearch(TAU(L), T(K), N-K+2) + 3
JJ = 0
CALL BSPVB (T, K, K, JJ, TAU(L), LEFT, WK)
LEFTMK = LEFT - K
DO MM = 1,K
DW = WK(MM)*WGT(L)
J = LEFTMK + MM
A(J) = DW*GTAU(L) + A(J)
I = 1
DO JJ = MM,K
Q(I,J) = WK(JJ)*DW + Q(I,J)
I = I + 1
enddo
enddo
endif
enddo
IF (ntau_count .ge. MAX(2,K)) then
C SOLVE THE NORMAL EQUATIONS
CALL BCHFAC (Q, K, N, WK, IERR)
CALL BCHSLV (Q, K, N, A)
else
ierr = -1
endif
end
SUBROUTINE BCHFAC (W, NB, N, DIAG, IFLAG)
implicit none
integer NB, N, IFLAG
DOUBLE PRECISION W(NB,N), DIAG(N)
C-----------------------------------------------------------------------
C FROM * A PRACTICAL GUIDE TO SPLINES * BY C. DE BOOR
C CONSTRUCTS CHOLESKY FACTORIZATION
C C = L * D * L-TRANSPOSE
C WITH L UNIT LOWER TRIANGULAR AND D DIAGONAL, FOR GIVEN MATRIX C OF
C ORDER N , IN CASE C IS (SYMMETRIC) POSITIVE SEMIDEFINITE
C AND BANDED, HAVING NB DIAGONALS AT AND BELOW THE MAIN DIAGONAL.
C
C****** INPUT ******
C
C N THE ORDER OF THE MATRIX C.
C
C NB THE BANDWIDTH OF C, I.E.,
C C(I,J) = 0 FOR ABS(I-J) .GT. NB .
C
C W WORK ARRAY OF SIZE NB BY N CONTAINING THE NB DIAGONALS
C IN ITS ROWS, WITH THE MAIN DIAGONAL IN ROW 1. PRECISELY,
C W(I,J) CONTAINS C(I+J-1,J), I=1,...,NB, J=1,...,N.
C FOR EXAMPLE, THE INTERESTING ENTRIES OF A SEVEN DIAGONAL
C SYMMETRIC MATRIX C OF ORDER 9 WOULD BE STORED IN W AS
C
C 11 22 33 44 55 66 77 88 99
C 21 32 43 54 65 76 87 98
C 31 42 53 64 75 86 97
C 41 52 63 74 85 96
C
C ALL OTHER ENTRIES OF W NOT IDENTIFIED WITH AN ENTRY OF C
C ARE NEVER REFERENCED.
C
C DIAG WORK ARRAY OF LENGTH N.
C
C****** O U T P U T ******
C T
C W CONTAINS THE CHOLESKY FACTORIZATION C = L*D*L WHERE
C W(1,I) = 1/D(I,I) AND W(I,J) = L(I-1+J,J) (I=2,...,NB).
C
C IFLAG 0 IF C IS NONSINGULAR AND 1 IF C IS SINGULAR.
C
C****** M E T H O D ******
C
C GAUSS ELIMINATION, ADAPTED TO THE SYMMETRY AND BANDEDNESS OF C , IS
C USED .
C NEAR ZERO PIVOTS ARE HANDLED IN A SPECIAL WAY. THE DIAGONAL ELE-
C MENT C(K,K) = W(1,K) IS SAVED INITIALLY IN DIAG(K), ALL K. AT THE K-
C TH ELIMINATION STEP, THE CURRENT PIVOT ELEMENT, VIZ. W(1,K), IS COM-
C PARED WITH ITS ORIGINAL VALUE, DIAG(K). IF, AS THE RESULT OF PRIOR
C ELIMINATION STEPS, THIS ELEMENT HAS BEEN REDUCED BY ABOUT A WORD
C LENGTH, (I.E., IF W(1,K)+DIAG(K) .LE. DIAG(K)), THEN THE PIVOT IS DE-
C CLARED TO BE ZERO, AND THE ENTIRE K-TH ROW IS DECLARED TO BE LINEARLY
C DEPENDENT ON THE PRECEDING ROWS. THIS HAS THE EFFECT OF PRODUCING
C X(K) = 0 WHEN SOLVING C*X = B FOR X, REGARDLESS OF B. JUSTIFIC-
C ATION FOR THIS IS AS FOLLOWS. IN CONTEMPLATED APPLICATIONS OF THIS
C PROGRAM, THE GIVEN EQUATIONS ARE THE NORMAL EQUATIONS FOR SOME LEAST-
C SQUARES APPROXIMATION PROBLEM, DIAG(K) = C(K,K) GIVES THE NORM-SQUARE
C OF THE K-TH BASIS FUNCTION, AND, AT THIS POINT, W(1,K) CONTAINS THE
C NORM-SQUARE OF THE ERROR IN THE LEAST-SQUARES APPROXIMATION TO THE K-
C TH BASIS FUNCTION BY LINEAR COMBINATIONS OF THE FIRST K-1 . HAVING
C W(1,K)+DIAG(K) .LE. DIAG(K) SIGNIFIES THAT THE K-TH FUNCTION IS LIN-
C EARLY DEPENDENT TO MACHINE ACCURACY ON THE FIRST K-1 FUNCTIONS, THERE
C FORE CAN SAFELY BE LEFT OUT FROM THE BASIS OF APPROXIMATING FUNCTIONS
C THE SOLUTION OF A LINEAR SYSTEM
C C*X = B
C IS EFFECTED BY THE SUCCESSION OF THE FOLLOWING T W O CALLS ...
C CALL BCHFAC (W, NB, N, DIAG, IFLAG) , TO GET FACTORIZATION
C CALL BCHSLV (W, NB, N, B, X ) , TO SOLVE FOR X.
C-----------------------------------------------------------------------
C
integer I, J, K, IMAX, JMAX, KPI, IPJ
double precision T, RATIO
IF (N .GT. 1) GO TO 10
IFLAG = 1
IF (W(1,1) .EQ. 0.D0) RETURN
IFLAG = 0
W(1,1) = 1.D0/W(1,1)
RETURN
C
C STORE THE DIAGONAL OF C IN DIAG
C
10 DO 11 K = 1,N
DIAG(K) = W(1,K)
11 CONTINUE
C
C FACTORIZATION
C
IFLAG = 0
DO 60 K = 1,N
T = W(1,K) + DIAG(K)
IF (T .NE. DIAG(K)) GO TO 30
IFLAG = 1
DO 20 J = 1,NB
W(J,K) = 0.D0
20 CONTINUE
GO TO 60
C
30 T = 1.D0/W(1,K)
W(1,K) = T
IMAX = MIN(NB - 1,N - K)
IF (IMAX .LT. 1) GO TO 60
JMAX = IMAX
DO 50 I = 1,IMAX
RATIO = T*W(I+1,K)
KPI = K + I
DO 40 J = 1,JMAX
IPJ = I + J
W(J,KPI) = W(J,KPI) - W(IPJ,K)*RATIO
40 CONTINUE
JMAX = JMAX - 1
W(I+1,K) = RATIO
50 CONTINUE
60 CONTINUE
RETURN
END
SUBROUTINE BCHSLV (W, NB, N, B)
implicit none
integer NB, N
DOUBLE PRECISION W(NB,N), B(N)
C-----------------------------------------------------------------------
C
C BCHSLV SOLVES THE LINEAR SYSTEM C*X = B FOR X WHEN W CONTAINS
C THE CHOLESKY FACTORIZATION OBTAINED BY THE SUBROUTINE BCHFAC
C FOR THE BANDED SYMMETRIC POSITIVE DEFINITE MATRIX C.
C
C INPUT ...
C
C N THE ORDER OF THE MATRIX C
C NB THE BANDWIDTH OF C
C W THE CHOLESKY FACTORIZATION OF C
C B VECTOR OF LENGTH N CONTAINING THE RIGHT SIDE
C
C OUTPUT ...
C
C B SOLUTION X OF THE LINEAR SYSTEM C*X = B
C
C T
C NOTE. THE FACTORIZATION C = L*D*L IS USED, WHERE L IS A
C UNIT LOWER TRIANGULAR MATRIX AND D A DIAGONAL MATRIX.
C
C-----------------------------------------------------------------------
C
integer J, NBM1, K, JMAX, JPK
IF (N .GT. 1) GO TO 10
B(1) = B(1)*W(1,1)
RETURN
C
C FORWARD SUBSTITUTION. SOLVE L*Y = B FOR Y AND STORE Y IN B.
C
10 NBM1 = NB - 1
DO 30 K = 1,N
JMAX = MIN(NBM1,N - K)
IF (JMAX .LT. 1) GO TO 30
DO 20 J = 1,JMAX
JPK = J + K
B(JPK) = B(JPK) - W(J + 1,K)*B(K)
20 CONTINUE
30 CONTINUE
C T -1
C BACKSUBSTITUTION. SOLVE L X = D Y FOR X AND STORE X IN B.
C
K = N
40 B(K) = B(K)*W(1,K)
JMAX = MIN(NBM1,N - K)
IF (JMAX .LT. 1) GO TO 60
DO 50 J = 1,JMAX
JPK = J + K
B(K) = B(K) - W(J + 1,K)*B(JPK)
50 CONTINUE
60 K = K - 1
IF (K .GT. 0) GO TO 40
RETURN
END
SUBROUTINE BSPVB (T, K, JHIGH, J, X, LEFT, BLIST)
implicit none
integer K, JHIGH, J, LEFT
DOUBLE PRECISION T(*), X, BLIST(K)
C-----------------------------------------------------------------------
C
C BSPVB CALCULATES THE VALUE OF ALL POSSIBLY NONZERO B-SPLINES
C AT X OF ORDER MAX(JHIGH,J + 1) WHERE T(K) .LE. X .LT. T(N+1).
C
C DESCRIPTION OF ARGUMENTS
C
C INPUT
C
C T - KNOT VECTOR OF LENGTH N + K.
C K - HIGHEST POSSIBLE ORDER OF THE B-SPLINES.
C JHIGH - ORDER OF B-SPLINES (1 .LE. JHIGH .LE. K).
C J - J .LE. 0 GIVES B-SPLINES OF ORDER JHIGH.
C J .GE. 1 ON A PREVIOUS CALL TO BSPVB THE
C B-SPLINES OF ORDER J WERE COM-
C PUTED AND STORED IN BLIST. IT IS
C ASSUMED THAT WORK HAS NOT BEEN
C MODIFIED AND THAT J .LT. K.
C X - ARGUMENT OF THE B-SPLINES.
C LEFT - LARGEST INTEGER SUCH THAT
C T(LEFT) .LE. X .LT. T(LEFT+1)
C
C OUTPUT
C
C BLIST - VECTOR OF LENGTH K FOR SPLINE VALUES.
C J - B-SPLINES OF ORDER J HAVE BEEN COMPUTED
C AND STORED IN BLIST.
C
C-----------------------------------------------------------------------
C WRITTEN BY CARL DE BOOR (UNIVERSITY OF WISCONSIN) AND MODIFIED
C BY A.H. MORRIS (NSWC).
C-----------------------------------------------------------------------
C
integer I, IMJ, L
double precision S, TIMJ, TI, TERM
IF (J .GT. 0) GO TO 10
J = 1
BLIST(1) = 1.D0
IF (J .GE. JHIGH) RETURN
C
10 S = 0.D0
DO 20 L = 1,J
I = LEFT + L
IMJ = I - J
TIMJ = T(IMJ)
TI = T(I)
TERM = BLIST(L)/(TI - TIMJ)
BLIST(L) = S + (TI - X)*TERM
S = (X - TIMJ)*TERM
20 CONTINUE
J = J + 1
BLIST(J) = S
IF (J .LT. JHIGH) GO TO 10
C
RETURN
END
SUBROUTINE BSPP (T, A, N, K, BREAK, C, L, WK)
implicit none
integer N, K, L
DOUBLE PRECISION T(*), A(N), BREAK(*), C(K,*), WK(K,*)
C-----------------------------------------------------------------------
C
C CONVERSION FROM B-SPLINE REPRESENTATION
C TO PIECEWISE POLYNOMIAL REPRESENTATION
C
C
C INPUT ...
C
C T KNOT SEQUENCE OF LENGTH N+K
C A B-SPLINE COEFFICIENT SEQUENCE OF LENGTH N
C N LENGTH OF A
C K ORDER OF THE B-SPLINES
C
C OUTPUT ...
C
C BREAK BREAKPOINT SEQUENCE, OF LENGTH L+1, CONTAINING
C (IN INCREASING ORDER) THE DISTINCT POINTS OF THE
C SEQUENCE T(K),...,T(N+1).
C C KXL MATRIX WHERE C(I,J) = (I-1)ST RIGHT DERIVATIVE
C OF THE PP AT BREAK(J) DIVIDED BY FACTORIAL(I-1).
C L NUMBER OF POLYNOMIALS WHICH FORM THE PP
C
C WORK AREA ...
C
C WK 2-DIMENSIONAL ARRAY OF DIMENSION (K,K+1)
C
C-----------------------------------------------------------------------
C
integer I, J, KM1, KP1, LEFT, JJ, JP1, KMJ, IL, ILJ, ILKJ
double precision TERM, DIFF, R, S, X
L = 0
BREAK(1) = T(K)
IF (K .EQ. 1) GO TO 100
KM1 = K - 1
KP1 = K + 1
C
C GENERAL K-TH ORDER CASE
C
DO 60 LEFT = K,N
IF (T(LEFT) .EQ. T(LEFT + 1)) GO TO 60
L = L + 1
BREAK(L + 1) = T(LEFT + 1)
DO 10 J = 1,K
JJ = LEFT - K + J
WK(J,1) = A(JJ)
10 CONTINUE
C
DO 21 J = 1,KM1
JP1 = J + 1
KMJ = K - J
DO 20 I = 1,KMJ
IL = I + LEFT
ILKJ = IL - KMJ
DIFF = T(IL) - T(ILKJ)
WK(I,JP1) = (WK(I+1,J) - WK(I,J))/DIFF
20 CONTINUE
21 CONTINUE
C
WK(1,KP1) = 1.D0
X = T(LEFT)
C(K,L) = WK(1,K)
R = 1.D0
DO 50 J = 1,KM1
JP1 = J + 1
S = 0.D0
DO 30 I = 1,J
IL = I + LEFT
ILJ = IL - J
TERM = WK(I,KP1)/(T(IL) - T(ILJ))
WK(I,KP1) = S + (T(IL) - X)*TERM
S = (X - T(ILJ))*TERM
30 CONTINUE
WK(JP1,KP1) = S
C
S = 0.D0
KMJ = K - J
DO 40 I = 1,JP1
S = S + WK(I,KMJ)*WK(I,KP1)
40 CONTINUE
R = (R*DBLE(KMJ))/DBLE(J)
C(KMJ,L) = R*S
50 CONTINUE
60 CONTINUE
RETURN
C
C PIECEWISE CONSTANT CASE
C
100 DO 110 LEFT = K,N
IF (T(LEFT) .EQ. T(LEFT + 1)) GO TO 110
L = L + 1
BREAK(L + 1) = T(LEFT + 1)
C(1,L) = A(LEFT)
110 CONTINUE
RETURN
END
|