1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
|
DOUBLE PRECISION FUNCTION DBVALU(T,A,N,K,IDERIV,X,INBV,WORK)
C***BEGIN PROLOGUE DBVALU
C***DATE WRITTEN 800901 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***REVISION HISTORY (YYMMDD)
C 000330 Modified array declarations. (JEC)
C
C***CATEGORY NO. E3,K6
C***KEYWORDS B-SPLINE,DATA FITTING,DOUBLE PRECISION,INTERPOLATION,
C SPLINE
C***AUTHOR AMOS, D. E., (SNLA)
C***PURPOSE Evaluates the B-representation of a B-spline at X for the
C function value or any of its derivatives.
C***DESCRIPTION
C
C Written by Carl de Boor and modified by D. E. Amos
C
C Reference
C SIAM J. Numerical Analysis, 14, No. 3, June, 1977, pp.441-472.
C
C Abstract **** a double precision routine ****
C DBVALU is the BVALUE function of the reference.
C
C DBVALU evaluates the B-representation (T,A,N,K) of a B-spline
C at X for the function value on IDERIV=0 or any of its
C derivatives on IDERIV=1,2,...,K-1. Right limiting values
C (right derivatives) are returned except at the right end
C point X=T(N+1) where left limiting values are computed. The
C spline is defined on T(K) .LE. X .LE. T(N+1). DBVALU returns
C a fatal error message when X is outside of this interval.
C
C To compute left derivatives or left limiting values at a
C knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.
C
C DBVALU calls DINTRV
C
C Description of Arguments
C
C Input T,A,X are double precision
C T - knot vector of length N+K
C A - B-spline coefficient vector of length N
C N - number of B-spline coefficients
C N = sum of knot multiplicities-K
C K - order of the B-spline, K .GE. 1
C IDERIV - order of the derivative, 0 .LE. IDERIV .LE. K-1
C IDERIV = 0 returns the B-spline value
C X - argument, T(K) .LE. X .LE. T(N+1)
C INBV - an initialization parameter which must be set
C to 1 the first time DBVALU is called.
C
C Output WORK,DBVALU are double precision
C INBV - INBV contains information for efficient process-
C ing after the initial call and INBV must not
C be changed by the user. Distinct splines require
C distinct INBV parameters.
C WORK - work vector of length 3*K.
C DBVALU - value of the IDERIV-th derivative at X
C
C Error Conditions
C An improper input is a fatal error
C***REFERENCES C. DE BOOR, *PACKAGE FOR CALCULATING WITH B-SPLINES*,
C SIAM JOURNAL ON NUMERICAL ANALYSIS, VOLUME 14, NO. 3,
C JUNE 1977, PP. 441-472.
C***ROUTINES CALLED DINTRV,XERROR
C***END PROLOGUE DBVALU
C
C
INTEGER I,IDERIV,IDERP1,IHI,IHMKMJ,ILO,IMK,IMKPJ, INBV, IPJ,
1 IP1, IP1MJ, J, JJ, J1, J2, K, KMIDER, KMJ, KM1, KPK, MFLAG, N
DOUBLE PRECISION A, FKMJ, T, WORK, X
DIMENSION T(*), A(N), WORK(*)
C***FIRST EXECUTABLE STATEMENT DBVALU
DBVALU = 0.0D0
IF(K.LT.1) GO TO 102
IF(N.LT.K) GO TO 101
IF(IDERIV.LT.0 .OR. IDERIV.GE.K) GO TO 110
KMIDER = K - IDERIV
C
C *** FIND *I* IN (K,N) SUCH THAT T(I) .LE. X .LT. T(I+1)
C (OR, .LE. T(I+1) IF T(I) .LT. T(I+1) = T(N+1)).
KM1 = K - 1
CALL DINTRV(T, N+1, X, INBV, I, MFLAG)
IF (X.LT.T(K)) GO TO 120
IF (MFLAG.EQ.0) GO TO 20
IF (X.GT.T(I)) GO TO 130
10 IF (I.EQ.K) GO TO 140
I = I - 1
IF (X.EQ.T(I)) GO TO 10
C
C *** DIFFERENCE THE COEFFICIENTS *IDERIV* TIMES
C WORK(I) = AJ(I), WORK(K+I) = DP(I), WORK(K+K+I) = DM(I), I=1.K
C
20 IMK = I - K
DO 30 J=1,K
IMKPJ = IMK + J
WORK(J) = A(IMKPJ)
30 CONTINUE
IF (IDERIV.EQ.0) GO TO 60
DO 50 J=1,IDERIV
KMJ = K - J
FKMJ = DBLE(FLOAT(KMJ))
DO 40 JJ=1,KMJ
IHI = I + JJ
IHMKMJ = IHI - KMJ
WORK(JJ) = (WORK(JJ+1)-WORK(JJ))/(T(IHI)-T(IHMKMJ))*FKMJ
40 CONTINUE
50 CONTINUE
C
C *** COMPUTE VALUE AT *X* IN (T(I),(T(I+1)) OF IDERIV-TH DERIVATIVE,
C GIVEN ITS RELEVANT B-SPLINE COEFF. IN AJ(1),...,AJ(K-IDERIV).
60 IF (IDERIV.EQ.KM1) GO TO 100
IP1 = I + 1
KPK = K + K
J1 = K + 1
J2 = KPK + 1
DO 70 J=1,KMIDER
IPJ = I + J
WORK(J1) = T(IPJ) - X
IP1MJ = IP1 - J
WORK(J2) = X - T(IP1MJ)
J1 = J1 + 1
J2 = J2 + 1
70 CONTINUE
IDERP1 = IDERIV + 1
DO 90 J=IDERP1,KM1
KMJ = K - J
ILO = KMJ
DO 80 JJ=1,KMJ
WORK(JJ) = (WORK(JJ+1)*WORK(KPK+ILO)+WORK(JJ)
1 *WORK(K+JJ))/(WORK(KPK+ILO)+WORK(K+JJ))
ILO = ILO - 1
80 CONTINUE
90 CONTINUE
100 DBVALU = WORK(1)
RETURN
C
C
101 CONTINUE
! CALL XERROR( ' DBVALU, N DOES NOT SATISFY N.GE.K',35,2,1)
print *, ' DBVALU, N DOES NOT SATISFY N.GE.K'
RETURN
102 CONTINUE
! CALL XERROR( ' DBVALU, K DOES NOT SATISFY K.GE.1',35,2,1)
print *, ' DBVALU, K DOES NOT SATISFY K.GE.1'
RETURN
110 CONTINUE
! CALL XERROR( ' DBVALU, IDERIV DOES NOT SATISFY 0.LE.IDERIV.LT.K',
print *, ' DBVALU, IDERIV DOES NOT SATISFY 0.LE.IDERIV.LT.K'
RETURN
120 CONTINUE
! CALL XERROR( ' DBVALU, X IS N0T GREATER THAN OR EQUAL TO T(K)'
print *, ' DBVALU, X IS N0T GREATER THAN OR EQUAL TO T(K)'
RETURN
130 CONTINUE
* CALL XERROR( ' DBVALU, X IS NOT LESS THAN OR EQUAL TO T(N+1)',
* 1 47, 2, 1)
print *, ' DBVALU, X IS NOT LESS THAN OR EQUAL TO T(N+1)'
RETURN
140 CONTINUE
* CALL XERROR( ' DBVALU, A LEFT LIMITING VALUE CANN0T BE OBTAINED A
* 1T T(K)', 58, 2, 1)
print *,' DBVALU, A LEFT LIMITING VALUE CANT BE OBTAINED AT T(K)'
RETURN
END
SUBROUTINE DINTRV(XT,LXT,X,ILO,ILEFT,MFLAG)
C***BEGIN PROLOGUE DINTRV
C***DATE WRITTEN 800901 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. E3,K6
C***KEYWORDS B-SPLINE,DATA FITTING,DOUBLE PRECISION,INTERPOLATION,
C SPLINE
C***AUTHOR AMOS, D. E., (SNLA)
C***PURPOSE Computes the largest integer ILEFT in 1.LE.ILEFT.LE.LXT
C such that XT(ILEFT).LE.X where XT(*) is a subdivision of
C the X interval.
C***DESCRIPTION
C
C Written by Carl de Boor and modified by D. E. Amos
C
C Reference
C SIAM J. Numerical Analysis, 14, No. 3, June 1977, pp.441-472.
C
C Abstract **** a double precision routine ****
C DINTRV is the INTERV routine of the reference.
C
C DINTRV computes the largest integer ILEFT in 1 .LE. ILEFT .LE.
C LXT such that XT(ILEFT) .LE. X where XT(*) is a subdivision of
C the X interval. Precisely,
C
C X .LT. XT(1) 1 -1
C if XT(I) .LE. X .LT. XT(I+1) then ILEFT=I , MFLAG=0
C XT(LXT) .LE. X LXT 1,
C
C That is, when multiplicities are present in the break point
C to the left of X, the largest index is taken for ILEFT.
C
C Description of Arguments
C
C Input XT,X are double precision
C XT - XT is a knot or break point vector of length LXT
C LXT - length of the XT vector
C X - argument
C ILO - an initialization parameter which must be set
C to 1 the first time the spline array XT is
C processed by DINTRV.
C
C Output
C ILO - ILO contains information for efficient process-
C ing after the initial call and ILO must not be
C changed by the user. Distinct splines require
C distinct ILO parameters.
C ILEFT - largest integer satisfying XT(ILEFT) .LE. X
C MFLAG - signals when X lies out of bounds
C
C Error Conditions
C None
C***REFERENCES C. DE BOOR, *PACKAGE FOR CALCULATING WITH B-SPLINES*,
C SIAM JOURNAL ON NUMERICAL ANALYSIS, VOLUME 14, NO. 3,
C JUNE 1977, PP. 441-472.
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DINTRV
C
C
INTEGER IHI, ILEFT, ILO, ISTEP, LXT, MFLAG, MIDDLE
DOUBLE PRECISION X, XT
DIMENSION XT(LXT)
C***FIRST EXECUTABLE STATEMENT DINTRV
IHI = ILO + 1
IF (IHI.LT.LXT) GO TO 10
IF (X.GE.XT(LXT)) GO TO 110
IF (LXT.LE.1) GO TO 90
ILO = LXT - 1
IHI = LXT
C
10 IF (X.GE.XT(IHI)) GO TO 40
IF (X.GE.XT(ILO)) GO TO 100
C
C *** NOW X .LT. XT(IHI) . FIND LOWER BOUND
ISTEP = 1
20 IHI = ILO
ILO = IHI - ISTEP
IF (ILO.LE.1) GO TO 30
IF (X.GE.XT(ILO)) GO TO 70
ISTEP = ISTEP*2
GO TO 20
30 ILO = 1
IF (X.LT.XT(1)) GO TO 90
GO TO 70
C *** NOW X .GE. XT(ILO) . FIND UPPER BOUND
40 ISTEP = 1
50 ILO = IHI
IHI = ILO + ISTEP
IF (IHI.GE.LXT) GO TO 60
IF (X.LT.XT(IHI)) GO TO 70
ISTEP = ISTEP*2
GO TO 50
60 IF (X.GE.XT(LXT)) GO TO 110
IHI = LXT
C
C *** NOW XT(ILO) .LE. X .LT. XT(IHI) . NARROW THE INTERVAL
70 MIDDLE = (ILO+IHI)/2
IF (MIDDLE.EQ.ILO) GO TO 100
C NOTE. IT IS ASSUMED THAT MIDDLE = ILO IN CASE IHI = ILO+1
IF (X.LT.XT(MIDDLE)) GO TO 80
ILO = MIDDLE
GO TO 70
80 IHI = MIDDLE
GO TO 70
C *** SET OUTPUT AND RETURN
90 MFLAG = -1
ILEFT = 1
RETURN
100 MFLAG = 0
ILEFT = ILO
RETURN
110 MFLAG = 1
ILEFT = LXT
RETURN
END
SUBROUTINE DBKNOT(X,N,K,T)
C***BEGIN PROLOGUE DBKNOT
C***REFER TO DB2INK,DB3INK
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 000330 Modified array declarations. (JEC)
C
C***END PROLOGUE DBKNOT
C
C --------------------------------------------------------------------
C DBKNOT CHOOSES A KNOT SEQUENCE FOR INTERPOLATION OF ORDER K AT THE
C DATA POINTS X(I), I=1,..,N. THE N+K KNOTS ARE PLACED IN THE ARRAY
C T. K KNOTS ARE PLACED AT EACH ENDPOINT AND NOT-A-KNOT END
C CONDITIONS ARE USED. THE REMAINING KNOTS ARE PLACED AT DATA POINTS
C IF N IS EVEN AND BETWEEN DATA POINTS IF N IS ODD. THE RIGHTMOST
C KNOT IS SHIFTED SLIGHTLY TO THE RIGHT TO INSURE PROPER INTERPOLATION
C AT X(N) (SEE PAGE 350 OF THE REFERENCE).
C DOUBLE PRECISION VERSION OF BKNOT.
C --------------------------------------------------------------------
C
C ------------
C DECLARATIONS
C ------------
C
C PARAMETERS
C
INTEGER
* N, K
DOUBLE PRECISION
* X(N), T(*)
C
C LOCAL VARIABLES
C
INTEGER
* I, J, IPJ, NPJ, IP1
DOUBLE PRECISION
* RNOT
C
C
C ----------------------------
C PUT K KNOTS AT EACH ENDPOINT
C ----------------------------
C
C (SHIFT RIGHT ENPOINTS SLIGHTLY -- SEE PG 350 OF REFERENCE)
RNOT = X(N) + 0.10D0*( X(N)-X(N-1) )
DO 110 J=1,K
T(J) = X(1)
NPJ = N + J
T(NPJ) = RNOT
110 CONTINUE
C
C --------------------------
C DISTRIBUTE REMAINING KNOTS
C --------------------------
C
IF (MOD(K,2) .EQ. 1) GO TO 150
C
C CASE OF EVEN K -- KNOTS AT DATA POINTS
C
I = (K/2) - K
JSTRT = K+1
DO 120 J=JSTRT,N
IPJ = I + J
T(J) = X(IPJ)
120 CONTINUE
GO TO 200
C
C CASE OF ODD K -- KNOTS BETWEEN DATA POINTS
C
150 CONTINUE
I = (K-1)/2 - K
IP1 = I + 1
JSTRT = K + 1
DO 160 J=JSTRT,N
IPJ = I + J
T(J) = 0.50D0*( X(IPJ) + X(IPJ+1) )
160 CONTINUE
200 CONTINUE
C
RETURN
END
SUBROUTINE DBTPCF(X,N,FCN,LDF,NF,T,K,BCOEF,WORK)
C***BEGIN PROLOGUE DBTPCF
C***REFER TO DB2INK,DB3INK
C***ROUTINES CALLED DBINTK,DBNSLV
C***REVISION HISTORY (YYMMDD)
C 000330 Modified array declarations. (JEC)
C
C***END PROLOGUE DBTPCF
C
C -----------------------------------------------------------------
C DBTPCF COMPUTES B-SPLINE INTERPOLATION COEFFICIENTS FOR NF SETS
C OF DATA STORED IN THE COLUMNS OF THE ARRAY FCN. THE B-SPLINE
C COEFFICIENTS ARE STORED IN THE ROWS OF BCOEF HOWEVER.
C EACH INTERPOLATION IS BASED ON THE N ABCISSA STORED IN THE
C ARRAY X, AND THE N+K KNOTS STORED IN THE ARRAY T. THE ORDER
C OF EACH INTERPOLATION IS K. THE WORK ARRAY MUST BE OF LENGTH
C AT LEAST 2*K*(N+1).
C DOUBLE PRECISION VERSION OF BTPCF.
C -----------------------------------------------------------------
C
C ------------
C DECLARATIONS
C ------------
C
C PARAMETERS
C
INTEGER
* N, LDF, K
DOUBLE PRECISION
* X(N), FCN(LDF,NF), T(*), BCOEF(NF,N), WORK(*)
C
C LOCAL VARIABLES
C
INTEGER
* I, J, K1, K2, IQ, IW
C
C ---------------------------------------------
C CHECK FOR NULL INPUT AND PARTITION WORK ARRAY
C ---------------------------------------------
C
C***FIRST EXECUTABLE STATEMENT
IF (NF .LE. 0) GO TO 500
K1 = K - 1
K2 = K1 + K
IQ = 1 + N
IW = IQ + K2*N+1
C
C -----------------------------
C COMPUTE B-SPLINE COEFFICIENTS
C -----------------------------
C
C
C FIRST DATA SET
C
CALL DBINTK(X,FCN,T,N,K,WORK,WORK(IQ),WORK(IW))
DO 20 I=1,N
BCOEF(1,I) = WORK(I)
20 CONTINUE
C
C ALL REMAINING DATA SETS BY BACK-SUBSTITUTION
C
IF (NF .EQ. 1) GO TO 500
DO 100 J=2,NF
DO 50 I=1,N
WORK(I) = FCN(I,J)
50 CONTINUE
CALL DBNSLV(WORK(IQ),K2,N,K1,K1,WORK)
DO 60 I=1,N
BCOEF(J,I) = WORK(I)
60 CONTINUE
100 CONTINUE
C
C ----
C EXIT
C ----
C
500 CONTINUE
RETURN
END
SUBROUTINE DBINTK(X,Y,T,N,K,BCOEF,Q,WORK)
C***BEGIN PROLOGUE DBINTK
C***DATE WRITTEN 800901 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***REVISION HISTORY (YYMMDD)
C 000330 Modified array declarations. (JEC)
C
C***CATEGORY NO. E1A
C***KEYWORDS B-SPLINE,DATA FITTING,DOUBLE PRECISION,INTERPOLATION,
C SPLINE
C***AUTHOR AMOS, D. E., (SNLA)
C***PURPOSE Produces the B-spline coefficients, BCOEF, of the
C B-spline of order K with knots T(I), I=1,...,N+K, which
C takes on the value Y(I) at X(I), I=1,...,N.
C***DESCRIPTION
C
C Written by Carl de Boor and modified by D. E. Amos
C
C References
C
C A Practical Guide to Splines by C. de Boor, Applied
C Mathematics Series 27, Springer, 1979.
C
C Abstract **** a double precision routine ****
C
C DBINTK is the SPLINT routine of the reference.
C
C DBINTK produces the B-spline coefficients, BCOEF, of the
C B-spline of order K with knots T(I), I=1,...,N+K, which
C takes on the value Y(I) at X(I), I=1,...,N. The spline or
C any of its derivatives can be evaluated by calls to DBVALU.
C
C The I-th equation of the linear system A*BCOEF = B for the
C coefficients of the interpolant enforces interpolation at
C X(I), I=1,...,N. Hence, B(I) = Y(I), for all I, and A is
C a band matrix with 2K-1 bands if A is invertible. The matrix
C A is generated row by row and stored, diagonal by diagonal,
C in the rows of Q, with the main diagonal going into row K.
C The banded system is then solved by a call to DBNFAC (which
C constructs the triangular factorization for A and stores it
C again in Q), followed by a call to DBNSLV (which then
C obtains the solution BCOEF by substitution). DBNFAC does no
C pivoting, since the total positivity of the matrix A makes
C this unnecessary. The linear system to be solved is
C (theoretically) invertible if and only if
C T(I) .LT. X(I) .LT. T(I+K), for all I.
C Equality is permitted on the left for I=1 and on the right
C for I=N when K knots are used at X(1) or X(N). Otherwise,
C violation of this condition is certain to lead to an error.
C
C DBINTK calls DBSPVN, DBNFAC, DBNSLV, XERROR
C
C Description of Arguments
C
C Input X,Y,T are double precision
C X - vector of length N containing data point abscissa
C in strictly increasing order.
C Y - corresponding vector of length N containing data
C point ordinates.
C T - knot vector of length N+K
C Since T(1),..,T(K) .LE. X(1) and T(N+1),..,T(N+K)
C .GE. X(N), this leaves only N-K knots (not nec-
C essarily X(I) values) interior to (X(1),X(N))
C N - number of data points, N .GE. K
C K - order of the spline, K .GE. 1
C
C Output BCOEF,Q,WORK are double precision
C BCOEF - a vector of length N containing the B-spline
C coefficients
C Q - a work vector of length (2*K-1)*N, containing
C the triangular factorization of the coefficient
C matrix of the linear system being solved. The
C coefficients for the interpolant of an
C additional data set (X(I),yY(I)), I=1,...,N
C with the same abscissa can be obtained by loading
C YY into BCOEF and then executing
C CALL DBNSLV(Q,2K-1,N,K-1,K-1,BCOEF)
C WORK - work vector of length 2*K
C
C Error Conditions
C Improper input is a fatal error
C Singular system of equations is a fatal error
C***REFERENCES C. DE BOOR, *A PRACTICAL GUIDE TO SPLINES*, APPLIED
C MATHEMATICS SERIES 27, SPRINGER, 1979.
C D.E. AMOS, *COMPUTATION WITH SPLINES AND B-SPLINES*,
C SAND78-1968,SANDIA LABORATORIES,MARCH,1979.
C***ROUTINES CALLED DBNFAC,DBNSLV,DBSPVN,XERROR
C***END PROLOGUE DBINTK
C
C
INTEGER IFLAG, IWORK, K, N, I, ILP1MX, J, JJ, KM1, KPKM2, LEFT,
1 LENQ, NP1
DOUBLE PRECISION BCOEF(N), Y(N), Q(*), T(*), X(N), XI, WORK(*)
C DIMENSION Q(2*K-1,N), T(N+K)
C***FIRST EXECUTABLE STATEMENT DBINTK
IF(K.LT.1) GO TO 100
IF(N.LT.K) GO TO 105
JJ = N - 1
IF(JJ.EQ.0) GO TO 6
DO 5 I=1,JJ
IF(X(I).GE.X(I+1)) GO TO 110
5 CONTINUE
6 CONTINUE
NP1 = N + 1
KM1 = K - 1
KPKM2 = 2*KM1
LEFT = K
C ZERO OUT ALL ENTRIES OF Q
LENQ = N*(K+KM1)
DO 10 I=1,LENQ
Q(I) = 0.0D0
10 CONTINUE
C
C *** LOOP OVER I TO CONSTRUCT THE N INTERPOLATION EQUATIONS
DO 50 I=1,N
XI = X(I)
ILP1MX = MIN0(I+K,NP1)
C *** FIND LEFT IN THE CLOSED INTERVAL (I,I+K-1) SUCH THAT
C T(LEFT) .LE. X(I) .LT. T(LEFT+1)
C MATRIX IS SINGULAR IF THIS IS NOT POSSIBLE
LEFT = MAX0(LEFT,I)
IF (XI.LT.T(LEFT)) GO TO 80
20 IF (XI.LT.T(LEFT+1)) GO TO 30
LEFT = LEFT + 1
IF (LEFT.LT.ILP1MX) GO TO 20
LEFT = LEFT - 1
IF (XI.GT.T(LEFT+1)) GO TO 80
C *** THE I-TH EQUATION ENFORCES INTERPOLATION AT XI, HENCE
C A(I,J) = B(J,K,T)(XI), ALL J. ONLY THE K ENTRIES WITH J =
C LEFT-K+1,...,LEFT ACTUALLY MIGHT BE NONZERO. THESE K NUMBERS
C ARE RETURNED, IN BCOEF (USED FOR TEMP.STORAGE HERE), BY THE
C FOLLOWING
30 CALL DBSPVN(T, K, K, 1, XI, LEFT, BCOEF, WORK, IWORK)
C WE THEREFORE WANT BCOEF(J) = B(LEFT-K+J)(XI) TO GO INTO
C A(I,LEFT-K+J), I.E., INTO Q(I-(LEFT+J)+2*K,(LEFT+J)-K) SINCE
C A(I+J,J) IS TO GO INTO Q(I+K,J), ALL I,J, IF WE CONSIDER Q
C AS A TWO-DIM. ARRAY , WITH 2*K-1 ROWS (SEE COMMENTS IN
C DBNFAC). IN THE PRESENT PROGRAM, WE TREAT Q AS AN EQUIVALENT
C ONE-DIMENSIONAL ARRAY (BECAUSE OF FORTRAN RESTRICTIONS ON
C DIMENSION STATEMENTS) . WE THEREFORE WANT BCOEF(J) TO GO INTO
C ENTRY
C I -(LEFT+J) + 2*K + ((LEFT+J) - K-1)*(2*K-1)
C = I-LEFT+1 + (LEFT -K)*(2*K-1) + (2*K-2)*J
C OF Q .
JJ = I - LEFT + 1 + (LEFT-K)*(K+KM1)
DO 40 J=1,K
JJ = JJ + KPKM2
Q(JJ) = BCOEF(J)
40 CONTINUE
50 CONTINUE
C
C ***OBTAIN FACTORIZATION OF A , STORED AGAIN IN Q.
CALL DBNFAC(Q, K+KM1, N, KM1, KM1, IFLAG)
GO TO (60, 90), IFLAG
C *** SOLVE A*BCOEF = Y BY BACKSUBSTITUTION
60 DO 70 I=1,N
BCOEF(I) = Y(I)
70 CONTINUE
CALL DBNSLV(Q, K+KM1, N, KM1, KM1, BCOEF)
RETURN
C
C
80 CONTINUE
! CALL XERROR( ' DBINTK, SOME ABSCISSA WAS NOT IN THE SUPPORT OF TH
! 1E CORRESPONDING BASIS FUNCTION AND THE SYSTEM IS SINGULAR.',109,2,
! 21)
RETURN
90 CONTINUE
! CALL XERROR( ' DBINTK, THE SYSTEM OF SOLVER DETECTS A SINGULAR SY
! 1STEM ALTHOUGH THE THEORETICAL CONDITIONS FOR A SOLUTION WERE SATIS
! 2FIED.',123,8,1)
RETURN
100 CONTINUE
! CALL XERROR( ' DBINTK, K DOES NOT SATISFY K.GE.1', 35, 2, 1)
RETURN
105 CONTINUE
! CALL XERROR( ' DBINTK, N DOES NOT SATISFY N.GE.K', 35, 2, 1)
RETURN
110 CONTINUE
! CALL XERROR( ' DBINTK, X(I) DOES NOT SATISFY X(I).LT.X(I+1) FOR S
! 1OME I', 57, 2, 1)
RETURN
END
SUBROUTINE DBNFAC(W,NROWW,NROW,NBANDL,NBANDU,IFLAG)
C***BEGIN PROLOGUE DBNFAC
C***REFER TO DBINT4,DBINTK
C
C DBNFAC is the BANFAC routine from
C * A Practical Guide to Splines * by C. de Boor
C
C DBNFAC is a double precision routine
C
C Returns in W the LU-factorization (without pivoting) of the banded
C matrix A of order NROW with (NBANDL + 1 + NBANDU) bands or diag-
C onals in the work array W .
C
C ***** I N P U T ****** W is double precision
C W.....Work array of size (NROWW,NROW) containing the interesting
C part of a banded matrix A , with the diagonals or bands of A
C stored in the rows of W , while columns of A correspond to
C columns of W . This is the storage mode used in LINPACK and
C results in efficient innermost loops.
C Explicitly, A has NBANDL bands below the diagonal
C + 1 (main) diagonal
C + NBANDU bands above the diagonal
C and thus, with MIDDLE = NBANDU + 1,
C A(I+J,J) is in W(I+MIDDLE,J) for I=-NBANDU,...,NBANDL
C J=1,...,NROW .
C For example, the interesting entries of A (1,2)-banded matrix
C of order 9 would appear in the first 1+1+2 = 4 rows of W
C as follows.
C 13 24 35 46 57 68 79
C 12 23 34 45 56 67 78 89
C 11 22 33 44 55 66 77 88 99
C 21 32 43 54 65 76 87 98
C
C All other entries of W not identified in this way with an en-
C try of A are never referenced .
C NROWW.....Row dimension of the work array W .
C must be .GE. NBANDL + 1 + NBANDU .
C NBANDL.....Number of bands of A below the main diagonal
C NBANDU.....Number of bands of A above the main diagonal .
C
C ***** O U T P U T ****** W is double precision
C IFLAG.....Integer indicating success( = 1) or failure ( = 2) .
C If IFLAG = 1, then
C W.....contains the LU-factorization of A into a unit lower triangu-
C lar matrix L and an upper triangular matrix U (both banded)
C and stored in customary fashion over the corresponding entries
C of A . This makes it possible to solve any particular linear
C system A*X = B for X by a
C CALL DBNSLV ( W, NROWW, NROW, NBANDL, NBANDU, B )
C with the solution X contained in B on return .
C If IFLAG = 2, then
C one of NROW-1, NBANDL,NBANDU failed to be nonnegative, or else
C one of the potential pivots was found to be zero indicating
C that A does not have an LU-factorization. This implies that
C A is singular in case it is totally positive .
C
C ***** M E T H O D ******
C Gauss elimination W I T H O U T pivoting is used. The routine is
C intended for use with matrices A which do not require row inter-
C changes during factorization, especially for the T O T A L L Y
C P O S I T I V E matrices which occur in spline calculations.
C The routine should NOT be used for an arbitrary banded matrix.
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DBNFAC
C
INTEGER IFLAG, NBANDL, NBANDU, NROW, NROWW, I, IPK, J, JMAX, K,
1 KMAX, MIDDLE, MIDMK, NROWM1
DOUBLE PRECISION W(NROWW,NROW), FACTOR, PIVOT
C
C***FIRST EXECUTABLE STATEMENT DBNFAC
IFLAG = 1
MIDDLE = NBANDU + 1
C W(MIDDLE,.) CONTAINS THE MAIN DIAGONAL OF A .
NROWM1 = NROW - 1
IF (NROWM1) 120, 110, 10
10 IF (NBANDL.GT.0) GO TO 30
C A IS UPPER TRIANGULAR. CHECK THAT DIAGONAL IS NONZERO .
DO 20 I=1,NROWM1
IF (W(MIDDLE,I).EQ.0.0D0) GO TO 120
20 CONTINUE
GO TO 110
30 IF (NBANDU.GT.0) GO TO 60
C A IS LOWER TRIANGULAR. CHECK THAT DIAGONAL IS NONZERO AND
C DIVIDE EACH COLUMN BY ITS DIAGONAL .
DO 50 I=1,NROWM1
PIVOT = W(MIDDLE,I)
IF (PIVOT.EQ.0.0D0) GO TO 120
JMAX = MIN0(NBANDL,NROW-I)
DO 40 J=1,JMAX
W(MIDDLE+J,I) = W(MIDDLE+J,I)/PIVOT
40 CONTINUE
50 CONTINUE
RETURN
C
C A IS NOT JUST A TRIANGULAR MATRIX. CONSTRUCT LU FACTORIZATION
60 DO 100 I=1,NROWM1
C W(MIDDLE,I) IS PIVOT FOR I-TH STEP .
PIVOT = W(MIDDLE,I)
IF (PIVOT.EQ.0.0D0) GO TO 120
C JMAX IS THE NUMBER OF (NONZERO) ENTRIES IN COLUMN I
C BELOW THE DIAGONAL .
JMAX = MIN0(NBANDL,NROW-I)
C DIVIDE EACH ENTRY IN COLUMN I BELOW DIAGONAL BY PIVOT .
DO 70 J=1,JMAX
W(MIDDLE+J,I) = W(MIDDLE+J,I)/PIVOT
70 CONTINUE
C KMAX IS THE NUMBER OF (NONZERO) ENTRIES IN ROW I TO
C THE RIGHT OF THE DIAGONAL .
KMAX = MIN0(NBANDU,NROW-I)
C SUBTRACT A(I,I+K)*(I-TH COLUMN) FROM (I+K)-TH COLUMN
C (BELOW ROW I ) .
DO 90 K=1,KMAX
IPK = I + K
MIDMK = MIDDLE - K
FACTOR = W(MIDMK,IPK)
DO 80 J=1,JMAX
W(MIDMK+J,IPK) = W(MIDMK+J,IPK) - W(MIDDLE+J,I)*FACTOR
80 CONTINUE
90 CONTINUE
100 CONTINUE
C CHECK THE LAST DIAGONAL ENTRY .
110 IF (W(MIDDLE,NROW).NE.0.0D0) RETURN
120 IFLAG = 2
RETURN
END
SUBROUTINE DBNSLV(W,NROWW,NROW,NBANDL,NBANDU,B)
C***BEGIN PROLOGUE DBNSLV
C***REFER TO DBINT4,DBINTK
C
C DBNSLV is the BANSLV routine from
C * A Practical Guide to Splines * by C. de Boor
C
C DBNSLV is a double precision routine
C
C Companion routine to DBNFAC . It returns the solution X of the
C linear system A*X = B in place of B , given the LU-factorization
C for A in the work array W from DBNFAC.
C
C ***** I N P U T ****** W,B are DOUBLE PRECISION
C W, NROWW,NROW,NBANDL,NBANDU.....Describe the LU-factorization of a
C banded matrix A of order NROW as constructed in DBNFAC .
C For details, see DBNFAC .
C B.....Right side of the system to be solved .
C
C ***** O U T P U T ****** B is DOUBLE PRECISION
C B.....Contains the solution X , of order NROW .
C
C ***** M E T H O D ******
C (With A = L*U, as stored in W,) the unit lower triangular system
C L(U*X) = B is solved for Y = U*X, and Y stored in B . Then the
C upper triangular system U*X = Y is solved for X . The calcul-
C ations are so arranged that the innermost loops stay within columns.
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DBNSLV
C
INTEGER NBANDL, NBANDU, NROW, NROWW, I, J, JMAX, MIDDLE, NROWM1
DOUBLE PRECISION W(NROWW,NROW), B(NROW)
C***FIRST EXECUTABLE STATEMENT DBNSLV
MIDDLE = NBANDU + 1
IF (NROW.EQ.1) GO TO 80
NROWM1 = NROW - 1
IF (NBANDL.EQ.0) GO TO 30
C FORWARD PASS
C FOR I=1,2,...,NROW-1, SUBTRACT RIGHT SIDE(I)*(I-TH COLUMN
C OF L ) FROM RIGHT SIDE (BELOW I-TH ROW) .
DO 20 I=1,NROWM1
JMAX = MIN0(NBANDL,NROW-I)
DO 10 J=1,JMAX
B(I+J) = B(I+J) - B(I)*W(MIDDLE+J,I)
10 CONTINUE
20 CONTINUE
C BACKWARD PASS
C FOR I=NROW,NROW-1,...,1, DIVIDE RIGHT SIDE(I) BY I-TH DIAG-
C ONAL ENTRY OF U, THEN SUBTRACT RIGHT SIDE(I)*(I-TH COLUMN
C OF U) FROM RIGHT SIDE (ABOVE I-TH ROW).
30 IF (NBANDU.GT.0) GO TO 50
C A IS LOWER TRIANGULAR .
DO 40 I=1,NROW
B(I) = B(I)/W(1,I)
40 CONTINUE
RETURN
50 I = NROW
60 B(I) = B(I)/W(MIDDLE,I)
JMAX = MIN0(NBANDU,I-1)
DO 70 J=1,JMAX
B(I-J) = B(I-J) - B(I)*W(MIDDLE-J,I)
70 CONTINUE
I = I - 1
IF (I.GT.1) GO TO 60
80 B(1) = B(1)/W(MIDDLE,1)
RETURN
END
SUBROUTINE DBSPVN(T,JHIGH,K,INDEX,X,ILEFT,VNIKX,WORK,IWORK)
C***BEGIN PROLOGUE DBSPVN
C***DATE WRITTEN 800901 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***REVISION HISTORY (YYMMDD)
C 000330 Modified array declarations. (JEC)
C
C***CATEGORY NO. E3,K6
C***KEYWORDS B-SPLINE,DATA FITTING,DOUBLE PRECISION,INTERPOLATION,
C SPLINE
C***AUTHOR AMOS, D. E., (SNLA)
C***PURPOSE Calculates the value of all (possibly) nonzero basis
C functions at X.
C***DESCRIPTION
C
C Written by Carl de Boor and modified by D. E. Amos
C
C Reference
C SIAM J. Numerical Analysis, 14, No. 3, June, 1977, pp.441-472.
C
C Abstract **** a double precision routine ****
C DBSPVN is the BSPLVN routine of the reference.
C
C DBSPVN calculates the value of all (possibly) nonzero basis
C functions at X of order MAX(JHIGH,(J+1)*(INDEX-1)), where T(K)
C .LE. X .LE. T(N+1) and J=IWORK is set inside the routine on
C the first call when INDEX=1. ILEFT is such that T(ILEFT) .LE.
C X .LT. T(ILEFT+1). A call to DINTRV(T,N+1,X,ILO,ILEFT,MFLAG)
C produces the proper ILEFT. DBSPVN calculates using the basic
C algorithm needed in DBSPVD. If only basis functions are
C desired, setting JHIGH=K and INDEX=1 can be faster than
C calling DBSPVD, but extra coding is required for derivatives
C (INDEX=2) and DBSPVD is set up for this purpose.
C
C Left limiting values are set up as described in DBSPVD.
C
C Description of Arguments
C
C Input T,X are double precision
C T - knot vector of length N+K, where
C N = number of B-spline basis functions
C N = sum of knot multiplicities-K
C JHIGH - order of B-spline, 1 .LE. JHIGH .LE. K
C K - highest possible order
C INDEX - INDEX = 1 gives basis functions of order JHIGH
C = 2 denotes previous entry with work, IWORK
C values saved for subsequent calls to
C DBSPVN.
C X - argument of basis functions,
C T(K) .LE. X .LE. T(N+1)
C ILEFT - largest integer such that
C T(ILEFT) .LE. X .LT. T(ILEFT+1)
C
C Output VNIKX, WORK are double precision
C VNIKX - vector of length K for spline values.
C WORK - a work vector of length 2*K
C IWORK - a work parameter. Both WORK and IWORK contain
C information necessary to continue for INDEX = 2.
C When INDEX = 1 exclusively, these are scratch
C variables and can be used for other purposes.
C
C Error Conditions
C Improper input is a fatal error.
C***REFERENCES C. DE BOOR, *PACKAGE FOR CALCULATING WITH B-SPLINES*,
C SIAM JOURNAL ON NUMERICAL ANALYSIS, VOLUME 14, NO. 3,
C JUNE 1977, PP. 441-472.
C***ROUTINES CALLED XERROR
C***END PROLOGUE DBSPVN
C
C
INTEGER ILEFT, IMJP1, INDEX, IPJ, IWORK, JHIGH, JP1, JP1ML, K, L
DOUBLE PRECISION T, VM, VMPREV, VNIKX, WORK, X
C DIMENSION T(ILEFT+JHIGH)
DIMENSION T(*), VNIKX(K), WORK(*)
C CONTENT OF J, DELTAM, DELTAP IS EXPECTED UNCHANGED BETWEEN CALLS.
C WORK(I) = DELTAP(I), WORK(K+I) = DELTAM(I), I = 1,K
C***FIRST EXECUTABLE STATEMENT DBSPVN
IF(K.LT.1) GO TO 90
IF(JHIGH.GT.K .OR. JHIGH.LT.1) GO TO 100
IF(INDEX.LT.1 .OR. INDEX.GT.2) GO TO 105
IF(X.LT.T(ILEFT) .OR. X.GT.T(ILEFT+1)) GO TO 110
GO TO (10, 20), INDEX
10 IWORK = 1
VNIKX(1) = 1.0D0
IF (IWORK.GE.JHIGH) GO TO 40
C
20 IPJ = ILEFT + IWORK
WORK(IWORK) = T(IPJ) - X
IMJP1 = ILEFT - IWORK + 1
WORK(K+IWORK) = X - T(IMJP1)
VMPREV = 0.0D0
JP1 = IWORK + 1
DO 30 L=1,IWORK
JP1ML = JP1 - L
VM = VNIKX(L)/(WORK(L)+WORK(K+JP1ML))
VNIKX(L) = VM*WORK(L) + VMPREV
VMPREV = VM*WORK(K+JP1ML)
30 CONTINUE
VNIKX(JP1) = VMPREV
IWORK = JP1
IF (IWORK.LT.JHIGH) GO TO 20
C
40 RETURN
C
C
90 CONTINUE
! CALL XERROR( ' DBSPVN, K DOES NOT SATISFY K.GE.1', 35, 2, 1)
RETURN
100 CONTINUE
! CALL XERROR( ' DBSPVN, JHIGH DOES NOT SATISFY 1.LE.JHIGH.LE.K',
! 1 48, 2, 1)
RETURN
105 CONTINUE
! CALL XERROR( ' DBSPVN, INDEX IS NOT 1 OR 2',29,2,1)
RETURN
110 CONTINUE
! CALL XERROR( ' DBSPVN, X DOES NOT SATISFY T(ILEFT).LE.X.LE.T(ILEF
! 1T+1)', 56, 2, 1)
RETURN
END
DOUBLE PRECISION FUNCTION DB3VAL(XVAL,YVAL,ZVAL,IDX,IDY,IDZ,
* TX,TY,TZ,NX,NY,NZ,KX,KY,KZ,BCOEF,WORK)
C***BEGIN PROLOGUE DB3VAL
C***DATE WRITTEN 25 MAY 1982
C***REVISION DATE 25 MAY 1982
C***REVISION HISTORY (YYMMDD)
C 000330 Modified array declarations. (JEC)
C
C***CATEGORY NO. E1A
C***KEYWORDS INTERPOLATION, THREE-DIMENSIONS, GRIDDED DATA, SPLINES,
C PIECEWISE POLYNOMIALS
C***AUTHOR BOISVERT, RONALD, NBS
C SCIENTIFIC COMPUTING DIVISION
C NATIONAL BUREAU OF STANDARDS
C WASHINGTON, DC 20234
C***PURPOSE DB3VAL EVALUATES THE PIECEWISE POLYNOMIAL INTERPOLATING
C FUNCTION CONSTRUCTED BY THE ROUTINE B3INK OR ONE OF ITS
C PARTIAL DERIVATIVES.
C DOUBLE PRECISION VERSION OF B3VAL.
C***DESCRIPTION
C
C DB3VAL evaluates the tensor product piecewise polynomial
C interpolant constructed by the routine DB3INK or one of its
C derivatives at the point (XVAL,YVAL,ZVAL). To evaluate the
C interpolant itself, set IDX=IDY=IDZ=0, to evaluate the first
C partial with respect to x, set IDX=1,IDY=IDZ=0, and so on.
C
C DB3VAL returns 0.0D0 if (XVAL,YVAL,ZVAL) is out of range. That is,
C XVAL.LT.TX(1) .OR. XVAL.GT.TX(NX+KX) .OR.
C YVAL.LT.TY(1) .OR. YVAL.GT.TY(NY+KY) .OR.
C ZVAL.LT.TZ(1) .OR. ZVAL.GT.TZ(NZ+KZ)
C If the knots TX, TY, and TZ were chosen by DB3INK, then this is
C equivalent to
C XVAL.LT.X(1) .OR. XVAL.GT.X(NX)+EPSX .OR.
C YVAL.LT.Y(1) .OR. YVAL.GT.Y(NY)+EPSY .OR.
C ZVAL.LT.Z(1) .OR. ZVAL.GT.Z(NZ)+EPSZ
C where EPSX = 0.1*(X(NX)-X(NX-1)), EPSY = 0.1*(Y(NY)-Y(NY-1)), and
C EPSZ = 0.1*(Z(NZ)-Z(NZ-1)).
C
C The input quantities TX, TY, TZ, NX, NY, NZ, KX, KY, KZ, and BCOEF
C should remain unchanged since the last call of DB3INK.
C
C
C I N P U T
C ---------
C
C XVAL Double precision scalar
C X coordinate of evaluation point.
C
C YVAL Double precision scalar
C Y coordinate of evaluation point.
C
C ZVAL Double precision scalar
C Z coordinate of evaluation point.
C
C IDX Integer scalar
C X derivative of piecewise polynomial to evaluate.
C
C IDY Integer scalar
C Y derivative of piecewise polynomial to evaluate.
C
C IDZ Integer scalar
C Z derivative of piecewise polynomial to evaluate.
C
C TX Double precision 1D array (size NX+KX)
C Sequence of knots defining the piecewise polynomial in
C the x direction. (Same as in last call to DB3INK.)
C
C TY Double precision 1D array (size NY+KY)
C Sequence of knots defining the piecewise polynomial in
C the y direction. (Same as in last call to DB3INK.)
C
C TZ Double precision 1D array (size NZ+KZ)
C Sequence of knots defining the piecewise polynomial in
C the z direction. (Same as in last call to DB3INK.)
C
C NX Integer scalar
C The number of interpolation points in x.
C (Same as in last call to DB3INK.)
C
C NY Integer scalar
C The number of interpolation points in y.
C (Same as in last call to DB3INK.)
C
C NZ Integer scalar
C The number of interpolation points in z.
C (Same as in last call to DB3INK.)
C
C KX Integer scalar
C Order of polynomial pieces in x.
C (Same as in last call to DB3INK.)
C
C KY Integer scalar
C Order of polynomial pieces in y.
C (Same as in last call to DB3INK.)
C
C KZ Integer scalar
C Order of polynomial pieces in z.
C (Same as in last call to DB3INK.)
C
C BCOEF Double precision 2D array (size NX by NY by NZ)
C The B-spline coefficients computed by DB3INK.
C
C WORK Double precision 1D array (size KY*KZ+3*max(KX,KY,KZ)+KZ)
C A working storage array.
C
C***REFERENCES CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES,
C SPRINGER-VERLAG, NEW YORK, 1978.
C***ROUTINES CALLED DINTRV,DBVALU
C***END PROLOGUE DB3VAL
C
C<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
C
C MODIFICATION
C ------------
C
C ADDED CHECK TO SEE IF X OR Y IS OUT OF RANGE, IF SO, RETURN 0.0
C
C R.F. BOISVERT, NIST
C 22 FEB 00
C
C<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
C ------------
C DECLARATIONS
C ------------
C
C PARAMETERS
C
INTEGER
* IDX, IDY, IDZ, NX, NY, NZ, KX, KY, KZ
DOUBLE PRECISION
* XVAL, YVAL, ZVAL, TX(*), TY(*), TZ(*), BCOEF(NX,NY,NZ),
* WORK(*)
C
C LOCAL VARIABLES
C
INTEGER
* ILOY, ILOZ, INBVX, INBV1, INBV2, LEFTY, LEFTZ, MFLAG,
* KCOLY, KCOLZ, IZ, IZM1, IW, I, J, K
DOUBLE PRECISION
* DBVALU
C
DATA ILOY /1/, ILOZ /1/, INBVX /1/
C SAVE ILOY , ILOZ , INBVX
C
C
C***FIRST EXECUTABLE STATEMENT
DB3VAL = 0.0D0
C NEXT STATEMENT - RFB MOD
IF (XVAL.LT.TX(1) .OR. XVAL.GT.TX(NX+KX) .OR.
+ YVAL.LT.TY(1) .OR. YVAL.GT.TY(NY+KY) .OR.
+ ZVAL.LT.TZ(1) .OR. ZVAL.GT.TZ(NZ+KZ)) GO TO 100
CALL DINTRV(TY,NY+KY,YVAL,ILOY,LEFTY,MFLAG)
IF (MFLAG .NE. 0) GO TO 100
CALL DINTRV(TZ,NZ+KZ,ZVAL,ILOZ,LEFTZ,MFLAG)
IF (MFLAG .NE. 0) GO TO 100
IZ = 1 + KY*KZ
IW = IZ + KZ
KCOLZ = LEFTZ - KZ
I = 0
DO 50 K=1,KZ
KCOLZ = KCOLZ + 1
KCOLY = LEFTY - KY
DO 50 J=1,KY
I = I + 1
KCOLY = KCOLY + 1
WORK(I) = DBVALU(TX,BCOEF(1,KCOLY,KCOLZ),NX,KX,IDX,XVAL,
* INBVX,WORK(IW))
50 CONTINUE
INBV1 = 1
IZM1 = IZ - 1
KCOLY = LEFTY - KY + 1
DO 60 K=1,KZ
I = (K-1)*KY + 1
J = IZM1 + K
WORK(J) = DBVALU(TY(KCOLY),WORK(I),KY,KY,IDY,YVAL,
* INBV1,WORK(IW))
60 CONTINUE
INBV2 = 1
KCOLZ = LEFTZ - KZ + 1
DB3VAL = DBVALU(TZ(KCOLZ),WORK(IZ),KZ,KZ,IDZ,ZVAL,INBV2,
* WORK(IW))
100 CONTINUE
RETURN
END
SUBROUTINE DB3INK(X,NX,Y,NY,Z,NZ,FCN,LDF1,LDF2,KX,KY,KZ,TX,TY,TZ,
* BCOEF,WORK,IFLAG)
C***BEGIN PROLOGUE DB3INK
C***DATE WRITTEN 25 MAY 1982
C***REVISION DATE 25 MAY 1982
C***REVISION HISTORY (YYMMDD)
C 000330 Modified array declarations. (JEC)
C
C***CATEGORY NO. E1A
C***KEYWORDS INTERPOLATION, THREE-DIMENSIONS, GRIDDED DATA, SPLINES,
C PIECEWISE POLYNOMIALS
C***AUTHOR BOISVERT, RONALD, NBS
C SCIENTIFIC COMPUTING DIVISION
C NATIONAL BUREAU OF STANDARDS
C WASHINGTON, DC 20234
C***PURPOSE DOUBLE PRECISION VERSION OF DB3INK
C DB3INK DETERMINES A PIECEWISE POLYNOMIAL FUNCTION THAT
C INTERPOLATES THREE-DIMENSIONAL GRIDDED DATA. USERS SPECIFY
C THE POLYNOMIAL ORDER (DEGREE+1) OF THE INTERPOLANT AND
C (OPTIONALLY) THE KNOT SEQUENCE.
C***DESCRIPTION
C
C DB3INK determines the parameters of a function that interpolates
C the three-dimensional gridded data (X(i),Y(j),Z(k),FCN(i,j,k)) for
C i=1,..,NX, j=1,..,NY, and k=1,..,NZ. The interpolating function and
C its derivatives may subsequently be evaluated by the function
C DB3VAL.
C
C The interpolating function is a piecewise polynomial function
C represented as a tensor product of one-dimensional B-splines. The
C form of this function is
C
C NX NY NZ
C S(x,y,z) = SUM SUM SUM a U (x) V (y) W (z)
C i=1 j=1 k=1 ij i j k
C
C where the functions U(i), V(j), and W(k) are one-dimensional B-
C spline basis functions. The coefficients a(i,j) are chosen so that
C
C S(X(i),Y(j),Z(k)) = FCN(i,j,k) for i=1,..,NX, j=1,..,NY, k=1,..,NZ
C
C Note that for fixed values of y and z S(x,y,z) is a piecewise
C polynomial function of x alone, for fixed values of x and z S(x,y,
C z) is a piecewise polynomial function of y alone, and for fixed
C values of x and y S(x,y,z) is a function of z alone. In one
C dimension a piecewise polynomial may be created by partitioning a
C given interval into subintervals and defining a distinct polynomial
C piece on each one. The points where adjacent subintervals meet are
C called knots. Each of the functions U(i), V(j), and W(k) above is a
C piecewise polynomial.
C
C Users of DB3INK choose the order (degree+1) of the polynomial
C pieces used to define the piecewise polynomial in each of the x, y,
C and z directions (KX, KY, and KZ). Users also may define their own
C knot sequence in x, y, and z separately (TX, TY, and TZ). If IFLAG=
C 0, however, DB3INK will choose sequences of knots that result in a
C piecewise polynomial interpolant with KX-2 continuous partial
C derivatives in x, KY-2 continuous partial derivatives in y, and KZ-
C 2 continuous partial derivatives in z. (KX knots are taken near
C each endpoint in x, not-a-knot end conditions are used, and the
C remaining knots are placed at data points if KX is even or at
C midpoints between data points if KX is odd. The y and z directions
C are treated similarly.)
C
C After a call to DB3INK, all information necessary to define the
C interpolating function are contained in the parameters NX, NY, NZ,
C KX, KY, KZ, TX, TY, TZ, and BCOEF. These quantities should not be
C altered until after the last call of the evaluation routine DB3VAL.
C
C
C I N P U T
C ---------
C
C X Double precision 1D array (size NX)
C Array of x abcissae. Must be strictly increasing.
C
C NX Integer scalar (.GE. 3)
C Number of x abcissae.
C
C Y Double precision 1D array (size NY)
C Array of y abcissae. Must be strictly increasing.
C
C NY Integer scalar (.GE. 3)
C Number of y abcissae.
C
C Z Double precision 1D array (size NZ)
C Array of z abcissae. Must be strictly increasing.
C
C NZ Integer scalar (.GE. 3)
C Number of z abcissae.
C
C FCN Double precision 3D array (size LDF1 by LDF2 by NY)
C Array of function values to interpolate. FCN(I,J,K) should
C contain the function value at the point (X(I),Y(J),Z(K))
C
C LDF1 Integer scalar (.GE. NX)
C The actual first dimension of FCN used in the
C calling program.
C
C LDF2 Integer scalar (.GE. NY)
C The actual second dimension of FCN used in the calling
C program.
C
C KX Integer scalar (.GE. 2, .LT. NX)
C The order of spline pieces in x.
C (Order = polynomial degree + 1)
C
C KY Integer scalar (.GE. 2, .LT. NY)
C The order of spline pieces in y.
C (Order = polynomial degree + 1)
C
C KZ Integer scalar (.GE. 2, .LT. NZ)
C The order of spline pieces in z.
C (Order = polynomial degree + 1)
C
C
C I N P U T O R O U T P U T
C -----------------------------
C
C TX Double precision 1D array (size NX+KX)
C The knots in the x direction for the spline interpolant.
C If IFLAG=0 these are chosen by DB3INK.
C If IFLAG=1 these are specified by the user.
C (Must be non-decreasing.)
C
C TY Double precision 1D array (size NY+KY)
C The knots in the y direction for the spline interpolant.
C If IFLAG=0 these are chosen by DB3INK.
C If IFLAG=1 these are specified by the user.
C (Must be non-decreasing.)
C
C TZ Double precision 1D array (size NZ+KZ)
C The knots in the z direction for the spline interpolant.
C If IFLAG=0 these are chosen by DB3INK.
C If IFLAG=1 these are specified by the user.
C (Must be non-decreasing.)
C
C
C O U T P U T
C -----------
C
C BCOEF Double precision 3D array (size NX by NY by NZ)
C Array of coefficients of the B-spline interpolant.
C This may be the same array as FCN.
C
C
C M I S C E L L A N E O U S
C -------------------------
C
C WORK Double precision 1D array (size NX*NY*NZ + max( 2*KX*(NX+1),
C 2*KY*(NY+1), 2*KZ*(NZ+1) )
C Array of working storage.
C
C IFLAG Integer scalar.
C On input: 0 == knot sequence chosen by B2INK
C 1 == knot sequence chosen by user.
C On output: 1 == successful execution
C 2 == IFLAG out of range
C 3 == NX out of range
C 4 == KX out of range
C 5 == X not strictly increasing
C 6 == TX not non-decreasing
C 7 == NY out of range
C 8 == KY out of range
C 9 == Y not strictly increasing
C 10 == TY not non-decreasing
C 11 == NZ out of range
C 12 == KZ out of range
C 13 == Z not strictly increasing
C 14 == TY not non-decreasing
C
C***REFERENCES CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES,
C SPRINGER-VERLAG, NEW YORK, 1978.
C CARL DE BOOR, EFFICIENT COMPUTER MANIPULATION OF TENSOR
C PRODUCTS, ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE,
C VOL. 5 (1979), PP. 173-182.
C***ROUTINES CALLED DBTPCF,DBKNOT
C***END PROLOGUE DB3INK
C
C ------------
C DECLARATIONS
C ------------
C
C PARAMETERS
C
INTEGER
* NX, NY, NZ, LDF1, LDF2, KX, KY, KZ, IFLAG
DOUBLE PRECISION
* X(NX), Y(NY), Z(NZ), FCN(LDF1,LDF2,NZ), TX(*), TY(*), TZ(*),
* BCOEF(NX,NY,NZ), WORK(*)
C
C LOCAL VARIABLES
C
INTEGER
* I, J, LOC, IW, NPK
C
C -----------------------
C CHECK VALIDITY OF INPUT
C -----------------------
C
C***FIRST EXECUTABLE STATEMENT
IF ((IFLAG .LT. 0) .OR. (IFLAG .GT. 1)) GO TO 920
IF (NX .LT. 3) GO TO 930
IF (NY .LT. 3) GO TO 970
IF (NZ .LT. 3) GO TO 1010
IF ((KX .LT. 2) .OR. (KX .GE. NX)) GO TO 940
IF ((KY .LT. 2) .OR. (KY .GE. NY)) GO TO 980
IF ((KZ .LT. 2) .OR. (KZ .GE. NZ)) GO TO 1020
DO 10 I=2,NX
IF (X(I) .LE. X(I-1)) GO TO 950
10 CONTINUE
DO 20 I=2,NY
IF (Y(I) .LE. Y(I-1)) GO TO 990
20 CONTINUE
DO 30 I=2,NZ
IF (Z(I) .LE. Z(I-1)) GO TO 1030
30 CONTINUE
IF (IFLAG .EQ. 0) GO TO 70
NPK = NX + KX
DO 40 I=2,NPK
IF (TX(I) .LT. TX(I-1)) GO TO 960
40 CONTINUE
NPK = NY + KY
DO 50 I=2,NPK
IF (TY(I) .LT. TY(I-1)) GO TO 1000
50 CONTINUE
NPK = NZ + KZ
DO 60 I=2,NPK
IF (TZ(I) .LT. TZ(I-1)) GO TO 1040
60 CONTINUE
70 CONTINUE
C
C ------------
C CHOOSE KNOTS
C ------------
C
IF (IFLAG .NE. 0) GO TO 100
CALL DBKNOT(X,NX,KX,TX)
CALL DBKNOT(Y,NY,KY,TY)
CALL DBKNOT(Z,NZ,KZ,TZ)
100 CONTINUE
C
C -------------------------------
C CONSTRUCT B-SPLINE COEFFICIENTS
C -------------------------------
C
IFLAG = 1
IW = NX*NY*NZ + 1
C
C COPY FCN TO WORK IN PACKED FOR DBTPCF
LOC = 0
DO 510 K=1,NZ
DO 510 J=1,NY
DO 510 I=1,NX
LOC = LOC + 1
WORK(LOC) = FCN(I,J,K)
510 CONTINUE
C
CALL DBTPCF(X,NX,WORK,NX,NY*NZ,TX,KX,BCOEF,WORK(IW))
CALL DBTPCF(Y,NY,BCOEF,NY,NX*NZ,TY,KY,WORK,WORK(IW))
CALL DBTPCF(Z,NZ,WORK,NZ,NX*NY,TZ,KZ,BCOEF,WORK(IW))
GO TO 9999
C
C -----
C EXITS
C -----
C
920 CONTINUE
! CALL XERRWV('DB3INK - IFLAG=I1 IS OUT OF RANGE.',
! * 35,2,1,1,IFLAG,I2,0,R1,R2)
IFLAG = 2
GO TO 9999
C
930 CONTINUE
IFLAG = 3
! CALL XERRWV('DB3INK - NX=I1 IS OUT OF RANGE.',
! * 32,IFLAG,1,1,NX,I2,0,R1,R2)
GO TO 9999
C
940 CONTINUE
IFLAG = 4
! CALL XERRWV('DB3INK - KX=I1 IS OUT OF RANGE.',
! * 32,IFLAG,1,1,KX,I2,0,R1,R2)
GO TO 9999
C
950 CONTINUE
IFLAG = 5
! CALL XERRWV('DB3INK - X ARRAY MUST BE STRICTLY INCREASING.',
! * 46,IFLAG,1,0,I1,I2,0,R1,R2)
GO TO 9999
C
960 CONTINUE
IFLAG = 6
! CALL XERRWV('DB3INK - TX ARRAY MUST BE NON-DECREASING.',
! * 42,IFLAG,1,0,I1,I2,0,R1,R2)
GO TO 9999
C
970 CONTINUE
IFLAG = 7
! CALL XERRWV('DB3INK - NY=I1 IS OUT OF RANGE.',
! * 32,IFLAG,1,1,NY,I2,0,R1,R2)
GO TO 9999
C
980 CONTINUE
IFLAG = 8
! CALL XERRWV('DB3INK - KY=I1 IS OUT OF RANGE.',
! * 32,IFLAG,1,1,KY,I2,0,R1,R2)
GO TO 9999
C
990 CONTINUE
IFLAG = 9
! CALL XERRWV('DB3INK - Y ARRAY MUST BE STRICTLY INCREASING.',
! * 46,IFLAG,1,0,I1,I2,0,R1,R2)
GO TO 9999
C
1000 CONTINUE
IFLAG = 10
! CALL XERRWV('DB3INK - TY ARRAY MUST BE NON-DECREASING.',
! * 42,IFLAG,1,0,I1,I2,0,R1,R2)
GO TO 9999
C
1010 CONTINUE
IFLAG = 11
! CALL XERRWV('DB3INK - NZ=I1 IS OUT OF RANGE.',
! * 32,IFLAG,1,1,NZ,I2,0,R1,R2)
GO TO 9999
C
1020 CONTINUE
IFLAG = 12
! CALL XERRWV('DB3INK - KZ=I1 IS OUT OF RANGE.',
! * 32,IFLAG,1,1,KZ,I2,0,R1,R2)
GO TO 9999
C
1030 CONTINUE
IFLAG = 13
! CALL XERRWV('DB3INK - Z ARRAY MUST BE STRICTLY INCREASING.',
! * 46,IFLAG,1,0,I1,I2,0,R1,R2)
GO TO 9999
C
1040 CONTINUE
IFLAG = 14
! CALL XERRWV('DB3INK - TZ ARRAY MUST BE NON-DECREASING.',
! * 42,IFLAG,1,0,I1,I2,0,R1,R2)
GO TO 9999
C
9999 CONTINUE
RETURN
END
|