File: dtensbs.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (1478 lines) | stat: -rw-r--r-- 51,469 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
      DOUBLE PRECISION FUNCTION DBVALU(T,A,N,K,IDERIV,X,INBV,WORK)
C***BEGIN PROLOGUE  DBVALU
C***DATE WRITTEN   800901   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***REVISION HISTORY  (YYMMDD)
C   000330  Modified array declarations.  (JEC)
C
C***CATEGORY NO.  E3,K6
C***KEYWORDS  B-SPLINE,DATA FITTING,DOUBLE PRECISION,INTERPOLATION,
C             SPLINE
C***AUTHOR  AMOS, D. E., (SNLA)
C***PURPOSE  Evaluates the B-representation of a B-spline at X for the
C            function value or any of its derivatives.
C***DESCRIPTION
C
C     Written by Carl de Boor and modified by D. E. Amos
C
C     Reference
C         SIAM J. Numerical Analysis, 14, No. 3, June, 1977, pp.441-472.
C
C     Abstract   **** a double precision routine ****
C         DBVALU is the BVALUE function of the reference.
C
C         DBVALU evaluates the B-representation (T,A,N,K) of a B-spline
C         at X for the function value on IDERIV=0 or any of its
C         derivatives on IDERIV=1,2,...,K-1.  Right limiting values
C         (right derivatives) are returned except at the right end
C         point X=T(N+1) where left limiting values are computed.  The
C         spline is defined on T(K) .LE. X .LE. T(N+1).  DBVALU returns
C         a fatal error message when X is outside of this interval.
C
C         To compute left derivatives or left limiting values at a
C         knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.
C
C         DBVALU calls DINTRV
C
C     Description of Arguments
C
C         Input      T,A,X are double precision
C          T       - knot vector of length N+K
C          A       - B-spline coefficient vector of length N
C          N       - number of B-spline coefficients
C                    N = sum of knot multiplicities-K
C          K       - order of the B-spline, K .GE. 1
C          IDERIV  - order of the derivative, 0 .LE. IDERIV .LE. K-1
C                    IDERIV = 0 returns the B-spline value
C          X       - argument, T(K) .LE. X .LE. T(N+1)
C          INBV    - an initialization parameter which must be set
C                    to 1 the first time DBVALU is called.
C
C         Output     WORK,DBVALU are double precision
C          INBV    - INBV contains information for efficient process-
C                    ing after the initial call and INBV must not
C                    be changed by the user.  Distinct splines require
C                    distinct INBV parameters.
C          WORK    - work vector of length 3*K.
C          DBVALU  - value of the IDERIV-th derivative at X
C
C     Error Conditions
C         An improper input is a fatal error
C***REFERENCES  C. DE BOOR, *PACKAGE FOR CALCULATING WITH B-SPLINES*,
C                 SIAM JOURNAL ON NUMERICAL ANALYSIS, VOLUME 14, NO. 3,
C                 JUNE 1977, PP. 441-472.
C***ROUTINES CALLED  DINTRV,XERROR
C***END PROLOGUE  DBVALU
C
C
      INTEGER I,IDERIV,IDERP1,IHI,IHMKMJ,ILO,IMK,IMKPJ, INBV, IPJ,
     1 IP1, IP1MJ, J, JJ, J1, J2, K, KMIDER, KMJ, KM1, KPK, MFLAG, N
      DOUBLE PRECISION A, FKMJ, T, WORK, X
      DIMENSION T(*), A(N), WORK(*)
C***FIRST EXECUTABLE STATEMENT  DBVALU
      DBVALU = 0.0D0
      IF(K.LT.1) GO TO 102
      IF(N.LT.K) GO TO 101
      IF(IDERIV.LT.0 .OR. IDERIV.GE.K) GO TO 110
      KMIDER = K - IDERIV
C
C *** FIND *I* IN (K,N) SUCH THAT T(I) .LE. X .LT. T(I+1)
C     (OR, .LE. T(I+1) IF T(I) .LT. T(I+1) = T(N+1)).
      KM1 = K - 1
      CALL DINTRV(T, N+1, X, INBV, I, MFLAG)
      IF (X.LT.T(K)) GO TO 120
      IF (MFLAG.EQ.0) GO TO 20
      IF (X.GT.T(I)) GO TO 130
   10 IF (I.EQ.K) GO TO 140
      I = I - 1
      IF (X.EQ.T(I)) GO TO 10
C
C *** DIFFERENCE THE COEFFICIENTS *IDERIV* TIMES
C     WORK(I) = AJ(I), WORK(K+I) = DP(I), WORK(K+K+I) = DM(I), I=1.K
C
   20 IMK = I - K
      DO 30 J=1,K
        IMKPJ = IMK + J
        WORK(J) = A(IMKPJ)
   30 CONTINUE
      IF (IDERIV.EQ.0) GO TO 60
      DO 50 J=1,IDERIV
        KMJ = K - J
        FKMJ = DBLE(FLOAT(KMJ))
        DO 40 JJ=1,KMJ
          IHI = I + JJ
          IHMKMJ = IHI - KMJ
          WORK(JJ) = (WORK(JJ+1)-WORK(JJ))/(T(IHI)-T(IHMKMJ))*FKMJ
   40   CONTINUE
   50 CONTINUE
C
C *** COMPUTE VALUE AT *X* IN (T(I),(T(I+1)) OF IDERIV-TH DERIVATIVE,
C     GIVEN ITS RELEVANT B-SPLINE COEFF. IN AJ(1),...,AJ(K-IDERIV).
   60 IF (IDERIV.EQ.KM1) GO TO 100
      IP1 = I + 1
      KPK = K + K
      J1 = K + 1
      J2 = KPK + 1
      DO 70 J=1,KMIDER
        IPJ = I + J
        WORK(J1) = T(IPJ) - X
        IP1MJ = IP1 - J
        WORK(J2) = X - T(IP1MJ)
        J1 = J1 + 1
        J2 = J2 + 1
   70 CONTINUE
      IDERP1 = IDERIV + 1
      DO 90 J=IDERP1,KM1
        KMJ = K - J
        ILO = KMJ
        DO 80 JJ=1,KMJ
          WORK(JJ) = (WORK(JJ+1)*WORK(KPK+ILO)+WORK(JJ)
     1              *WORK(K+JJ))/(WORK(KPK+ILO)+WORK(K+JJ))
          ILO = ILO - 1
   80   CONTINUE
   90 CONTINUE
  100 DBVALU = WORK(1)
      RETURN
C
C
  101 CONTINUE
!      CALL XERROR( ' DBVALU,  N DOES NOT SATISFY N.GE.K',35,2,1)
      print *, ' DBVALU,  N DOES NOT SATISFY N.GE.K'
      RETURN
  102 CONTINUE
!      CALL XERROR( ' DBVALU,  K DOES NOT SATISFY K.GE.1',35,2,1)
      print *, ' DBVALU,  K DOES NOT SATISFY K.GE.1'
      RETURN
  110 CONTINUE
!      CALL XERROR( ' DBVALU,  IDERIV DOES NOT SATISFY 0.LE.IDERIV.LT.K',
      print *, ' DBVALU,  IDERIV DOES NOT SATISFY 0.LE.IDERIV.LT.K'

      RETURN
  120 CONTINUE
!      CALL XERROR( ' DBVALU,  X IS N0T GREATER THAN OR EQUAL TO T(K)'
      print *, ' DBVALU,  X IS N0T GREATER THAN OR EQUAL TO T(K)'
      RETURN
  130 CONTINUE
*      CALL XERROR( ' DBVALU,  X IS NOT LESS THAN OR EQUAL TO T(N+1)',
*     1 47, 2, 1)
      print *,  ' DBVALU,  X IS NOT LESS THAN OR EQUAL TO T(N+1)'
      RETURN
  140 CONTINUE
*      CALL XERROR( ' DBVALU,  A LEFT LIMITING VALUE CANN0T BE OBTAINED A
*     1T T(K)',    58, 2, 1)
      print *,' DBVALU, A LEFT LIMITING VALUE CANT BE OBTAINED AT T(K)'
      RETURN
      END

      SUBROUTINE DINTRV(XT,LXT,X,ILO,ILEFT,MFLAG)
C***BEGIN PROLOGUE  DINTRV
C***DATE WRITTEN   800901   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  E3,K6
C***KEYWORDS  B-SPLINE,DATA FITTING,DOUBLE PRECISION,INTERPOLATION,
C             SPLINE
C***AUTHOR  AMOS, D. E., (SNLA)
C***PURPOSE  Computes the largest integer ILEFT in 1.LE.ILEFT.LE.LXT
C            such that XT(ILEFT).LE.X where XT(*) is a subdivision of
C            the X interval.
C***DESCRIPTION
C
C     Written by Carl de Boor and modified by D. E. Amos
C
C     Reference
C         SIAM J.  Numerical Analysis, 14, No. 3, June 1977, pp.441-472.
C
C     Abstract    **** a double precision routine ****
C         DINTRV is the INTERV routine of the reference.
C
C         DINTRV computes the largest integer ILEFT in 1 .LE. ILEFT .LE.
C         LXT such that XT(ILEFT) .LE. X where XT(*) is a subdivision of
C         the X interval.  Precisely,
C
C                      X .LT. XT(1)                1         -1
C         if  XT(I) .LE. X .LT. XT(I+1)  then  ILEFT=I  , MFLAG=0
C           XT(LXT) .LE. X                         LXT        1,
C
C         That is, when multiplicities are present in the break point
C         to the left of X, the largest index is taken for ILEFT.
C
C     Description of Arguments
C
C         Input      XT,X are double precision
C          XT      - XT is a knot or break point vector of length LXT
C          LXT     - length of the XT vector
C          X       - argument
C          ILO     - an initialization parameter which must be set
C                    to 1 the first time the spline array XT is
C                    processed by DINTRV.
C
C         Output
C          ILO     - ILO contains information for efficient process-
C                    ing after the initial call and ILO must not be
C                    changed by the user.  Distinct splines require
C                    distinct ILO parameters.
C          ILEFT   - largest integer satisfying XT(ILEFT) .LE. X
C          MFLAG   - signals when X lies out of bounds
C
C     Error Conditions
C         None
C***REFERENCES  C. DE BOOR, *PACKAGE FOR CALCULATING WITH B-SPLINES*,
C                 SIAM JOURNAL ON NUMERICAL ANALYSIS, VOLUME 14, NO. 3,
C                 JUNE 1977, PP. 441-472.
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DINTRV
C
C
      INTEGER IHI, ILEFT, ILO, ISTEP, LXT, MFLAG, MIDDLE
      DOUBLE PRECISION X, XT
      DIMENSION XT(LXT)
C***FIRST EXECUTABLE STATEMENT  DINTRV
      IHI = ILO + 1
      IF (IHI.LT.LXT) GO TO 10
      IF (X.GE.XT(LXT)) GO TO 110
      IF (LXT.LE.1) GO TO 90
      ILO = LXT - 1
      IHI = LXT
C
   10 IF (X.GE.XT(IHI)) GO TO 40
      IF (X.GE.XT(ILO)) GO TO 100
C
C *** NOW X .LT. XT(IHI) . FIND LOWER BOUND
      ISTEP = 1
   20 IHI = ILO
      ILO = IHI - ISTEP
      IF (ILO.LE.1) GO TO 30
      IF (X.GE.XT(ILO)) GO TO 70
      ISTEP = ISTEP*2
      GO TO 20
   30 ILO = 1
      IF (X.LT.XT(1)) GO TO 90
      GO TO 70
C *** NOW X .GE. XT(ILO) . FIND UPPER BOUND
   40 ISTEP = 1
   50 ILO = IHI
      IHI = ILO + ISTEP
      IF (IHI.GE.LXT) GO TO 60
      IF (X.LT.XT(IHI)) GO TO 70
      ISTEP = ISTEP*2
      GO TO 50
   60 IF (X.GE.XT(LXT)) GO TO 110
      IHI = LXT
C
C *** NOW XT(ILO) .LE. X .LT. XT(IHI) . NARROW THE INTERVAL
   70 MIDDLE = (ILO+IHI)/2
      IF (MIDDLE.EQ.ILO) GO TO 100
C     NOTE. IT IS ASSUMED THAT MIDDLE = ILO IN CASE IHI = ILO+1
      IF (X.LT.XT(MIDDLE)) GO TO 80
      ILO = MIDDLE
      GO TO 70
   80 IHI = MIDDLE
      GO TO 70
C *** SET OUTPUT AND RETURN
   90 MFLAG = -1
      ILEFT = 1
      RETURN
  100 MFLAG = 0
      ILEFT = ILO
      RETURN
  110 MFLAG = 1
      ILEFT = LXT
      RETURN
      END

      SUBROUTINE DBKNOT(X,N,K,T)
C***BEGIN PROLOGUE  DBKNOT
C***REFER TO  DB2INK,DB3INK
C***ROUTINES CALLED  (NONE)
C***REVISION HISTORY  (YYMMDD)
C   000330  Modified array declarations.  (JEC)
C
C***END PROLOGUE  DBKNOT
C
C  --------------------------------------------------------------------
C  DBKNOT CHOOSES A KNOT SEQUENCE FOR INTERPOLATION OF ORDER K AT THE
C  DATA POINTS X(I), I=1,..,N.  THE N+K KNOTS ARE PLACED IN THE ARRAY
C  T.  K KNOTS ARE PLACED AT EACH ENDPOINT AND NOT-A-KNOT END
C  CONDITIONS ARE USED.  THE REMAINING KNOTS ARE PLACED AT DATA POINTS
C  IF N IS EVEN AND BETWEEN DATA POINTS IF N IS ODD.  THE RIGHTMOST
C  KNOT IS SHIFTED SLIGHTLY TO THE RIGHT TO INSURE PROPER INTERPOLATION
C  AT X(N) (SEE PAGE 350 OF THE REFERENCE).
C  DOUBLE PRECISION VERSION OF BKNOT.
C  --------------------------------------------------------------------
C
C  ------------
C  DECLARATIONS
C  ------------
C
C  PARAMETERS
C
      INTEGER
     *        N, K
      DOUBLE PRECISION
     *     X(N), T(*)
C
C  LOCAL VARIABLES
C
      INTEGER
     *        I, J, IPJ, NPJ, IP1
      DOUBLE PRECISION
     *     RNOT
C
C
C  ----------------------------
C  PUT K KNOTS AT EACH ENDPOINT
C  ----------------------------
C
C     (SHIFT RIGHT ENPOINTS SLIGHTLY -- SEE PG 350 OF REFERENCE)
      RNOT = X(N) + 0.10D0*( X(N)-X(N-1) )
      DO 110 J=1,K
         T(J) = X(1)
         NPJ = N + J
         T(NPJ) = RNOT
  110 CONTINUE
C
C  --------------------------
C  DISTRIBUTE REMAINING KNOTS
C  --------------------------
C
      IF (MOD(K,2) .EQ. 1)  GO TO 150
C
C     CASE OF EVEN K --  KNOTS AT DATA POINTS
C
      I = (K/2) - K
      JSTRT = K+1
      DO 120 J=JSTRT,N
         IPJ = I + J
         T(J) = X(IPJ)
  120 CONTINUE
      GO TO 200
C
C     CASE OF ODD K --  KNOTS BETWEEN DATA POINTS
C
  150 CONTINUE
      I = (K-1)/2 - K
      IP1 = I + 1
      JSTRT = K + 1
      DO 160 J=JSTRT,N
         IPJ = I + J
         T(J) = 0.50D0*( X(IPJ) + X(IPJ+1) )
  160 CONTINUE
  200 CONTINUE
C
      RETURN
      END

      SUBROUTINE DBTPCF(X,N,FCN,LDF,NF,T,K,BCOEF,WORK)
C***BEGIN PROLOGUE  DBTPCF
C***REFER TO  DB2INK,DB3INK
C***ROUTINES CALLED  DBINTK,DBNSLV
C***REVISION HISTORY  (YYMMDD)
C   000330  Modified array declarations.  (JEC)
C
C***END PROLOGUE  DBTPCF
C
C  -----------------------------------------------------------------
C  DBTPCF COMPUTES B-SPLINE INTERPOLATION COEFFICIENTS FOR NF SETS
C  OF DATA STORED IN THE COLUMNS OF THE ARRAY FCN. THE B-SPLINE
C  COEFFICIENTS ARE STORED IN THE ROWS OF BCOEF HOWEVER.
C  EACH INTERPOLATION IS BASED ON THE N ABCISSA STORED IN THE
C  ARRAY X, AND THE N+K KNOTS STORED IN THE ARRAY T. THE ORDER
C  OF EACH INTERPOLATION IS K. THE WORK ARRAY MUST BE OF LENGTH
C  AT LEAST 2*K*(N+1).
C  DOUBLE PRECISION VERSION OF BTPCF.
C  -----------------------------------------------------------------
C
C  ------------
C  DECLARATIONS
C  ------------
C
C  PARAMETERS
C
      INTEGER
     *        N, LDF, K
      DOUBLE PRECISION
     *     X(N), FCN(LDF,NF), T(*), BCOEF(NF,N), WORK(*)
C
C  LOCAL VARIABLES
C
      INTEGER
     *        I, J, K1, K2, IQ, IW
C
C  ---------------------------------------------
C  CHECK FOR NULL INPUT AND PARTITION WORK ARRAY
C  ---------------------------------------------
C
C***FIRST EXECUTABLE STATEMENT
      IF (NF .LE. 0)  GO TO 500
      K1 = K - 1
      K2 = K1 + K
      IQ = 1 + N
      IW = IQ + K2*N+1
C
C  -----------------------------
C  COMPUTE B-SPLINE COEFFICIENTS
C  -----------------------------
C
C
C   FIRST DATA SET
C
      CALL DBINTK(X,FCN,T,N,K,WORK,WORK(IQ),WORK(IW))
      DO 20 I=1,N
         BCOEF(1,I) = WORK(I)
   20 CONTINUE
C
C  ALL REMAINING DATA SETS BY BACK-SUBSTITUTION
C
      IF (NF .EQ. 1)  GO TO 500
      DO 100 J=2,NF
         DO 50 I=1,N
            WORK(I) = FCN(I,J)
   50    CONTINUE
         CALL DBNSLV(WORK(IQ),K2,N,K1,K1,WORK)
         DO 60 I=1,N
            BCOEF(J,I) = WORK(I)
   60    CONTINUE
  100 CONTINUE
C
C  ----
C  EXIT
C  ----
C
  500 CONTINUE
      RETURN
      END

      SUBROUTINE DBINTK(X,Y,T,N,K,BCOEF,Q,WORK)
C***BEGIN PROLOGUE  DBINTK
C***DATE WRITTEN   800901   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***REVISION HISTORY  (YYMMDD)
C   000330  Modified array declarations.  (JEC)
C
C***CATEGORY NO.  E1A
C***KEYWORDS  B-SPLINE,DATA FITTING,DOUBLE PRECISION,INTERPOLATION,
C             SPLINE
C***AUTHOR  AMOS, D. E., (SNLA)
C***PURPOSE  Produces the B-spline coefficients, BCOEF, of the
C            B-spline of order K with knots T(I), I=1,...,N+K, which
C            takes on the value Y(I) at X(I), I=1,...,N.
C***DESCRIPTION
C
C     Written by Carl de Boor and modified by D. E. Amos
C
C     References
C
C         A Practical Guide to Splines by C. de Boor, Applied
C         Mathematics Series 27, Springer, 1979.
C
C     Abstract    **** a double precision routine ****
C
C         DBINTK is the SPLINT routine of the reference.
C
C         DBINTK produces the B-spline coefficients, BCOEF, of the
C         B-spline of order K with knots T(I), I=1,...,N+K, which
C         takes on the value Y(I) at X(I), I=1,...,N.  The spline or
C         any of its derivatives can be evaluated by calls to DBVALU.
C
C         The I-th equation of the linear system A*BCOEF = B for the
C         coefficients of the interpolant enforces interpolation at
C         X(I), I=1,...,N.  Hence, B(I) = Y(I), for all I, and A is
C         a band matrix with 2K-1 bands if A is invertible.  The matrix
C         A is generated row by row and stored, diagonal by diagonal,
C         in the rows of Q, with the main diagonal going into row K.
C         The banded system is then solved by a call to DBNFAC (which
C         constructs the triangular factorization for A and stores it
C         again in Q), followed by a call to DBNSLV (which then
C         obtains the solution BCOEF by substitution).  DBNFAC does no
C         pivoting, since the total positivity of the matrix A makes
C         this unnecessary.  The linear system to be solved is
C         (theoretically) invertible if and only if
C                 T(I) .LT. X(I) .LT. T(I+K),        for all I.
C         Equality is permitted on the left for I=1 and on the right
C         for I=N when K knots are used at X(1) or X(N).  Otherwise,
C         violation of this condition is certain to lead to an error.
C
C         DBINTK calls DBSPVN, DBNFAC, DBNSLV, XERROR
C
C     Description of Arguments
C
C         Input       X,Y,T are double precision
C           X       - vector of length N containing data point abscissa
C                     in strictly increasing order.
C           Y       - corresponding vector of length N containing data
C                     point ordinates.
C           T       - knot vector of length N+K
C                     Since T(1),..,T(K) .LE. X(1) and T(N+1),..,T(N+K)
C                     .GE. X(N), this leaves only N-K knots (not nec-
C                     essarily X(I) values) interior to (X(1),X(N))
C           N       - number of data points, N .GE. K
C           K       - order of the spline, K .GE. 1
C
C         Output      BCOEF,Q,WORK are double precision
C           BCOEF   - a vector of length N containing the B-spline
C                     coefficients
C           Q       - a work vector of length (2*K-1)*N, containing
C                     the triangular factorization of the coefficient
C                     matrix of the linear system being solved.  The
C                     coefficients for the interpolant of an
C                     additional data set (X(I),yY(I)), I=1,...,N
C                     with the same abscissa can be obtained by loading
C                     YY into BCOEF and then executing
C                         CALL DBNSLV(Q,2K-1,N,K-1,K-1,BCOEF)
C           WORK    - work vector of length 2*K
C
C     Error Conditions
C         Improper input is a fatal error
C         Singular system of equations is a fatal error
C***REFERENCES  C. DE BOOR, *A PRACTICAL GUIDE TO SPLINES*, APPLIED
C                 MATHEMATICS SERIES 27, SPRINGER, 1979.
C               D.E. AMOS, *COMPUTATION WITH SPLINES AND B-SPLINES*,
C                 SAND78-1968,SANDIA LABORATORIES,MARCH,1979.
C***ROUTINES CALLED  DBNFAC,DBNSLV,DBSPVN,XERROR
C***END PROLOGUE  DBINTK
C
C
      INTEGER IFLAG, IWORK, K, N, I, ILP1MX, J, JJ, KM1, KPKM2, LEFT,
     1 LENQ, NP1
      DOUBLE PRECISION BCOEF(N), Y(N), Q(*), T(*), X(N), XI, WORK(*)
C     DIMENSION Q(2*K-1,N), T(N+K)
C***FIRST EXECUTABLE STATEMENT  DBINTK
      IF(K.LT.1) GO TO 100
      IF(N.LT.K) GO TO 105
      JJ = N - 1
      IF(JJ.EQ.0) GO TO 6
      DO 5 I=1,JJ
      IF(X(I).GE.X(I+1)) GO TO 110
    5 CONTINUE
    6 CONTINUE
      NP1 = N + 1
      KM1 = K - 1
      KPKM2 = 2*KM1
      LEFT = K
C                ZERO OUT ALL ENTRIES OF Q
      LENQ = N*(K+KM1)
      DO 10 I=1,LENQ
        Q(I) = 0.0D0
   10 CONTINUE
C
C  ***   LOOP OVER I TO CONSTRUCT THE  N  INTERPOLATION EQUATIONS
      DO 50 I=1,N
        XI = X(I)
        ILP1MX = MIN0(I+K,NP1)
C        *** FIND  LEFT  IN THE CLOSED INTERVAL (I,I+K-1) SUCH THAT
C                T(LEFT) .LE. X(I) .LT. T(LEFT+1)
C        MATRIX IS SINGULAR IF THIS IS NOT POSSIBLE
        LEFT = MAX0(LEFT,I)
        IF (XI.LT.T(LEFT)) GO TO 80
   20   IF (XI.LT.T(LEFT+1)) GO TO 30
        LEFT = LEFT + 1
        IF (LEFT.LT.ILP1MX) GO TO 20
        LEFT = LEFT - 1
        IF (XI.GT.T(LEFT+1)) GO TO 80
C        *** THE I-TH EQUATION ENFORCES INTERPOLATION AT XI, HENCE
C        A(I,J) = B(J,K,T)(XI), ALL J. ONLY THE  K  ENTRIES WITH  J =
C        LEFT-K+1,...,LEFT ACTUALLY MIGHT BE NONZERO. THESE  K  NUMBERS
C        ARE RETURNED, IN  BCOEF (USED FOR TEMP.STORAGE HERE), BY THE
C        FOLLOWING
   30   CALL DBSPVN(T, K, K, 1, XI, LEFT, BCOEF, WORK, IWORK)
C        WE THEREFORE WANT  BCOEF(J) = B(LEFT-K+J)(XI) TO GO INTO
C        A(I,LEFT-K+J), I.E., INTO  Q(I-(LEFT+J)+2*K,(LEFT+J)-K) SINCE
C        A(I+J,J)  IS TO GO INTO  Q(I+K,J), ALL I,J,  IF WE CONSIDER  Q
C        AS A TWO-DIM. ARRAY , WITH  2*K-1  ROWS (SEE COMMENTS IN
C        DBNFAC). IN THE PRESENT PROGRAM, WE TREAT  Q  AS AN EQUIVALENT
C        ONE-DIMENSIONAL ARRAY (BECAUSE OF FORTRAN RESTRICTIONS ON
C        DIMENSION STATEMENTS) . WE THEREFORE WANT  BCOEF(J) TO GO INTO
C        ENTRY
C            I -(LEFT+J) + 2*K + ((LEFT+J) - K-1)*(2*K-1)
C                   =  I-LEFT+1 + (LEFT -K)*(2*K-1) + (2*K-2)*J
C        OF  Q .
        JJ = I - LEFT + 1 + (LEFT-K)*(K+KM1)
        DO 40 J=1,K
          JJ = JJ + KPKM2
          Q(JJ) = BCOEF(J)
   40   CONTINUE
   50 CONTINUE
C
C     ***OBTAIN FACTORIZATION OF  A  , STORED AGAIN IN  Q.
      CALL DBNFAC(Q, K+KM1, N, KM1, KM1, IFLAG)
      GO TO (60, 90), IFLAG
C     *** SOLVE  A*BCOEF = Y  BY BACKSUBSTITUTION
   60 DO 70 I=1,N
        BCOEF(I) = Y(I)
   70 CONTINUE
      CALL DBNSLV(Q, K+KM1, N, KM1, KM1, BCOEF)
      RETURN
C
C
   80 CONTINUE
!      CALL XERROR( ' DBINTK,  SOME ABSCISSA WAS NOT IN THE SUPPORT OF TH
!     1E CORRESPONDING BASIS FUNCTION AND THE SYSTEM IS SINGULAR.',109,2,
!     21)
      RETURN
   90 CONTINUE
!      CALL XERROR( ' DBINTK,  THE SYSTEM OF SOLVER DETECTS A SINGULAR SY
!     1STEM ALTHOUGH THE THEORETICAL CONDITIONS FOR A SOLUTION WERE SATIS
!     2FIED.',123,8,1)
      RETURN
  100 CONTINUE
!      CALL XERROR( ' DBINTK,  K DOES NOT SATISFY K.GE.1', 35, 2, 1)
      RETURN
  105 CONTINUE
!      CALL XERROR( ' DBINTK,  N DOES NOT SATISFY N.GE.K', 35, 2, 1)
      RETURN
  110 CONTINUE
!      CALL XERROR( ' DBINTK,  X(I) DOES NOT SATISFY X(I).LT.X(I+1) FOR S
!     1OME I', 57, 2, 1)
      RETURN
      END

      SUBROUTINE DBNFAC(W,NROWW,NROW,NBANDL,NBANDU,IFLAG)
C***BEGIN PROLOGUE  DBNFAC
C***REFER TO  DBINT4,DBINTK
C
C  DBNFAC is the BANFAC routine from
C        * A Practical Guide to Splines *  by C. de Boor
C
C  DBNFAC is a double precision routine
C
C  Returns in  W  the LU-factorization (without pivoting) of the banded
C  matrix  A  of order  NROW  with  (NBANDL + 1 + NBANDU) bands or diag-
C  onals in the work array  W .
C
C *****  I N P U T  ****** W is double precision
C  W.....Work array of size  (NROWW,NROW)  containing the interesting
C        part of a banded matrix  A , with the diagonals or bands of  A
C        stored in the rows of  W , while columns of  A  correspond to
C        columns of  W . This is the storage mode used in  LINPACK  and
C        results in efficient innermost loops.
C           Explicitly,  A  has  NBANDL  bands below the diagonal
C                            +     1     (main) diagonal
C                            +   NBANDU  bands above the diagonal
C        and thus, with    MIDDLE = NBANDU + 1,
C          A(I+J,J)  is in  W(I+MIDDLE,J)  for I=-NBANDU,...,NBANDL
C                                              J=1,...,NROW .
C        For example, the interesting entries of A (1,2)-banded matrix
C        of order  9  would appear in the first  1+1+2 = 4  rows of  W
C        as follows.
C                          13 24 35 46 57 68 79
C                       12 23 34 45 56 67 78 89
C                    11 22 33 44 55 66 77 88 99
C                    21 32 43 54 65 76 87 98
C
C        All other entries of  W  not identified in this way with an en-
C        try of  A  are never referenced .
C  NROWW.....Row dimension of the work array  W .
C        must be  .GE.  NBANDL + 1 + NBANDU  .
C  NBANDL.....Number of bands of  A  below the main diagonal
C  NBANDU.....Number of bands of  A  above the main diagonal .
C
C *****  O U T P U T  ****** W is double precision
C  IFLAG.....Integer indicating success( = 1) or failure ( = 2) .
C     If  IFLAG = 1, then
C  W.....contains the LU-factorization of  A  into a unit lower triangu-
C        lar matrix  L  and an upper triangular matrix  U (both banded)
C        and stored in customary fashion over the corresponding entries
C        of  A . This makes it possible to solve any particular linear
C        system  A*X = B  for  X  by a
C              CALL DBNSLV ( W, NROWW, NROW, NBANDL, NBANDU, B )
C        with the solution X  contained in  B  on return .
C     If  IFLAG = 2, then
C        one of  NROW-1, NBANDL,NBANDU failed to be nonnegative, or else
C        one of the potential pivots was found to be zero indicating
C        that  A  does not have an LU-factorization. This implies that
C        A  is singular in case it is totally positive .
C
C *****  M E T H O D  ******
C     Gauss elimination  W I T H O U T  pivoting is used. The routine is
C  intended for use with matrices  A  which do not require row inter-
C  changes during factorization, especially for the  T O T A L L Y
C  P O S I T I V E  matrices which occur in spline calculations.
C     The routine should NOT be used for an arbitrary banded matrix.
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DBNFAC
C
      INTEGER IFLAG, NBANDL, NBANDU, NROW, NROWW, I, IPK, J, JMAX, K,
     1 KMAX, MIDDLE, MIDMK, NROWM1
      DOUBLE PRECISION W(NROWW,NROW), FACTOR, PIVOT
C
C***FIRST EXECUTABLE STATEMENT  DBNFAC
      IFLAG = 1
      MIDDLE = NBANDU + 1
C                         W(MIDDLE,.) CONTAINS THE MAIN DIAGONAL OF  A .
      NROWM1 = NROW - 1
      IF (NROWM1) 120, 110, 10
   10 IF (NBANDL.GT.0) GO TO 30
C                A IS UPPER TRIANGULAR. CHECK THAT DIAGONAL IS NONZERO .
      DO 20 I=1,NROWM1
        IF (W(MIDDLE,I).EQ.0.0D0) GO TO 120
   20 CONTINUE
      GO TO 110
   30 IF (NBANDU.GT.0) GO TO 60
C              A IS LOWER TRIANGULAR. CHECK THAT DIAGONAL IS NONZERO AND
C                 DIVIDE EACH COLUMN BY ITS DIAGONAL .
      DO 50 I=1,NROWM1
        PIVOT = W(MIDDLE,I)
        IF (PIVOT.EQ.0.0D0) GO TO 120
        JMAX = MIN0(NBANDL,NROW-I)
        DO 40 J=1,JMAX
          W(MIDDLE+J,I) = W(MIDDLE+J,I)/PIVOT
   40   CONTINUE
   50 CONTINUE
      RETURN
C
C        A  IS NOT JUST A TRIANGULAR MATRIX. CONSTRUCT LU FACTORIZATION
   60 DO 100 I=1,NROWM1
C                                  W(MIDDLE,I)  IS PIVOT FOR I-TH STEP .
        PIVOT = W(MIDDLE,I)
        IF (PIVOT.EQ.0.0D0) GO TO 120
C                 JMAX  IS THE NUMBER OF (NONZERO) ENTRIES IN COLUMN  I
C                     BELOW THE DIAGONAL .
        JMAX = MIN0(NBANDL,NROW-I)
C              DIVIDE EACH ENTRY IN COLUMN  I  BELOW DIAGONAL BY PIVOT .
        DO 70 J=1,JMAX
          W(MIDDLE+J,I) = W(MIDDLE+J,I)/PIVOT
   70   CONTINUE
C                 KMAX  IS THE NUMBER OF (NONZERO) ENTRIES IN ROW  I  TO
C                     THE RIGHT OF THE DIAGONAL .
        KMAX = MIN0(NBANDU,NROW-I)
C                  SUBTRACT  A(I,I+K)*(I-TH COLUMN) FROM (I+K)-TH COLUMN
C                  (BELOW ROW  I ) .
        DO 90 K=1,KMAX
          IPK = I + K
          MIDMK = MIDDLE - K
          FACTOR = W(MIDMK,IPK)
          DO 80 J=1,JMAX
            W(MIDMK+J,IPK) = W(MIDMK+J,IPK) - W(MIDDLE+J,I)*FACTOR
   80     CONTINUE
   90   CONTINUE
  100 CONTINUE
C                                       CHECK THE LAST DIAGONAL ENTRY .
  110 IF (W(MIDDLE,NROW).NE.0.0D0) RETURN
  120 IFLAG = 2
      RETURN
      END

      SUBROUTINE DBNSLV(W,NROWW,NROW,NBANDL,NBANDU,B)
C***BEGIN PROLOGUE  DBNSLV
C***REFER TO  DBINT4,DBINTK
C
C  DBNSLV is the BANSLV routine from
C        * A Practical Guide to Splines *  by C. de Boor
C
C  DBNSLV is a double precision routine
C
C  Companion routine to  DBNFAC . It returns the solution  X  of the
C  linear system  A*X = B  in place of  B , given the LU-factorization
C  for  A  in the work array  W from DBNFAC.
C
C *****  I N P U T  ****** W,B are DOUBLE PRECISION
C  W, NROWW,NROW,NBANDL,NBANDU.....Describe the LU-factorization of a
C        banded matrix  A  of order  NROW  as constructed in  DBNFAC .
C        For details, see  DBNFAC .
C  B.....Right side of the system to be solved .
C
C *****  O U T P U T  ****** B is DOUBLE PRECISION
C  B.....Contains the solution  X , of order  NROW .
C
C *****  M E T H O D  ******
C     (With  A = L*U, as stored in  W,) the unit lower triangular system
C  L(U*X) = B  is solved for  Y = U*X, and  Y  stored in  B . Then the
C  upper triangular system  U*X = Y  is solved for  X  . The calcul-
C  ations are so arranged that the innermost loops stay within columns.
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DBNSLV
C
      INTEGER NBANDL, NBANDU, NROW, NROWW, I, J, JMAX, MIDDLE, NROWM1
      DOUBLE PRECISION W(NROWW,NROW), B(NROW)
C***FIRST EXECUTABLE STATEMENT  DBNSLV
      MIDDLE = NBANDU + 1
      IF (NROW.EQ.1) GO TO 80
      NROWM1 = NROW - 1
      IF (NBANDL.EQ.0) GO TO 30
C                                 FORWARD PASS
C            FOR I=1,2,...,NROW-1, SUBTRACT  RIGHT SIDE(I)*(I-TH COLUMN
C            OF  L )  FROM RIGHT SIDE  (BELOW I-TH ROW) .
      DO 20 I=1,NROWM1
        JMAX = MIN0(NBANDL,NROW-I)
        DO 10 J=1,JMAX
          B(I+J) = B(I+J) - B(I)*W(MIDDLE+J,I)
   10   CONTINUE
   20 CONTINUE
C                                 BACKWARD PASS
C            FOR I=NROW,NROW-1,...,1, DIVIDE RIGHT SIDE(I) BY I-TH DIAG-
C            ONAL ENTRY OF  U, THEN SUBTRACT  RIGHT SIDE(I)*(I-TH COLUMN
C            OF  U)  FROM RIGHT SIDE  (ABOVE I-TH ROW).
   30 IF (NBANDU.GT.0) GO TO 50
C                                A  IS LOWER TRIANGULAR .
      DO 40 I=1,NROW
        B(I) = B(I)/W(1,I)
   40 CONTINUE
      RETURN
   50 I = NROW
   60 B(I) = B(I)/W(MIDDLE,I)
      JMAX = MIN0(NBANDU,I-1)
      DO 70 J=1,JMAX
        B(I-J) = B(I-J) - B(I)*W(MIDDLE-J,I)
   70 CONTINUE
      I = I - 1
      IF (I.GT.1) GO TO 60
   80 B(1) = B(1)/W(MIDDLE,1)
      RETURN
      END

      SUBROUTINE DBSPVN(T,JHIGH,K,INDEX,X,ILEFT,VNIKX,WORK,IWORK)
C***BEGIN PROLOGUE  DBSPVN
C***DATE WRITTEN   800901   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***REVISION HISTORY  (YYMMDD)
C   000330  Modified array declarations.  (JEC)
C
C***CATEGORY NO.  E3,K6
C***KEYWORDS  B-SPLINE,DATA FITTING,DOUBLE PRECISION,INTERPOLATION,
C             SPLINE
C***AUTHOR  AMOS, D. E., (SNLA)
C***PURPOSE  Calculates the value of all (possibly) nonzero basis
C            functions at X.
C***DESCRIPTION
C
C     Written by Carl de Boor and modified by D. E. Amos
C
C     Reference
C         SIAM J. Numerical Analysis, 14, No. 3, June, 1977, pp.441-472.
C
C     Abstract    **** a double precision routine ****
C         DBSPVN is the BSPLVN routine of the reference.
C
C         DBSPVN calculates the value of all (possibly) nonzero basis
C         functions at X of order MAX(JHIGH,(J+1)*(INDEX-1)), where T(K)
C         .LE. X .LE. T(N+1) and J=IWORK is set inside the routine on
C         the first call when INDEX=1.  ILEFT is such that T(ILEFT) .LE.
C         X .LT. T(ILEFT+1).  A call to DINTRV(T,N+1,X,ILO,ILEFT,MFLAG)
C         produces the proper ILEFT.  DBSPVN calculates using the basic
C         algorithm needed in DBSPVD.  If only basis functions are
C         desired, setting JHIGH=K and INDEX=1 can be faster than
C         calling DBSPVD, but extra coding is required for derivatives
C         (INDEX=2) and DBSPVD is set up for this purpose.
C
C         Left limiting values are set up as described in DBSPVD.
C
C     Description of Arguments
C
C         Input      T,X are double precision
C          T       - knot vector of length N+K, where
C                    N = number of B-spline basis functions
C                    N = sum of knot multiplicities-K
C          JHIGH   - order of B-spline, 1 .LE. JHIGH .LE. K
C          K       - highest possible order
C          INDEX   - INDEX = 1 gives basis functions of order JHIGH
C                          = 2 denotes previous entry with work, IWORK
C                              values saved for subsequent calls to
C                              DBSPVN.
C          X       - argument of basis functions,
C                    T(K) .LE. X .LE. T(N+1)
C          ILEFT   - largest integer such that
C                    T(ILEFT) .LE. X .LT.  T(ILEFT+1)
C
C         Output     VNIKX, WORK are double precision
C          VNIKX   - vector of length K for spline values.
C          WORK    - a work vector of length 2*K
C          IWORK   - a work parameter.  Both WORK and IWORK contain
C                    information necessary to continue for INDEX = 2.
C                    When INDEX = 1 exclusively, these are scratch
C                    variables and can be used for other purposes.
C
C     Error Conditions
C         Improper input is a fatal error.
C***REFERENCES  C. DE BOOR, *PACKAGE FOR CALCULATING WITH B-SPLINES*,
C                 SIAM JOURNAL ON NUMERICAL ANALYSIS, VOLUME 14, NO. 3,
C                 JUNE 1977, PP. 441-472.
C***ROUTINES CALLED  XERROR
C***END PROLOGUE  DBSPVN
C
C
      INTEGER ILEFT, IMJP1, INDEX, IPJ, IWORK, JHIGH, JP1, JP1ML, K, L
      DOUBLE PRECISION T, VM, VMPREV, VNIKX, WORK, X
C     DIMENSION T(ILEFT+JHIGH)
      DIMENSION T(*), VNIKX(K), WORK(*)
C     CONTENT OF J, DELTAM, DELTAP IS EXPECTED UNCHANGED BETWEEN CALLS.
C     WORK(I) = DELTAP(I), WORK(K+I) = DELTAM(I), I = 1,K
C***FIRST EXECUTABLE STATEMENT  DBSPVN
      IF(K.LT.1) GO TO 90
      IF(JHIGH.GT.K .OR. JHIGH.LT.1) GO TO 100
      IF(INDEX.LT.1 .OR. INDEX.GT.2) GO TO 105
      IF(X.LT.T(ILEFT) .OR. X.GT.T(ILEFT+1)) GO TO 110
      GO TO (10, 20), INDEX
   10 IWORK = 1
      VNIKX(1) = 1.0D0
      IF (IWORK.GE.JHIGH) GO TO 40
C
   20 IPJ = ILEFT + IWORK
      WORK(IWORK) = T(IPJ) - X
      IMJP1 = ILEFT - IWORK + 1
      WORK(K+IWORK) = X - T(IMJP1)
      VMPREV = 0.0D0
      JP1 = IWORK + 1
      DO 30 L=1,IWORK
        JP1ML = JP1 - L
        VM = VNIKX(L)/(WORK(L)+WORK(K+JP1ML))
        VNIKX(L) = VM*WORK(L) + VMPREV
        VMPREV = VM*WORK(K+JP1ML)
   30 CONTINUE
      VNIKX(JP1) = VMPREV
      IWORK = JP1
      IF (IWORK.LT.JHIGH) GO TO 20
C
   40 RETURN
C
C
   90 CONTINUE
!      CALL XERROR( ' DBSPVN,  K DOES NOT SATISFY K.GE.1', 35, 2, 1)
      RETURN
  100 CONTINUE
!      CALL XERROR( ' DBSPVN,  JHIGH DOES NOT SATISFY 1.LE.JHIGH.LE.K',
!     1 48, 2, 1)
      RETURN
  105 CONTINUE
!      CALL XERROR( ' DBSPVN,  INDEX IS NOT 1 OR 2',29,2,1)
      RETURN
  110 CONTINUE
!      CALL XERROR( ' DBSPVN,  X DOES NOT SATISFY T(ILEFT).LE.X.LE.T(ILEF
!     1T+1)', 56, 2, 1)
      RETURN
      END

      DOUBLE PRECISION FUNCTION DB3VAL(XVAL,YVAL,ZVAL,IDX,IDY,IDZ,
     *  TX,TY,TZ,NX,NY,NZ,KX,KY,KZ,BCOEF,WORK)
C***BEGIN PROLOGUE  DB3VAL
C***DATE WRITTEN   25 MAY 1982
C***REVISION DATE  25 MAY 1982
C***REVISION HISTORY  (YYMMDD)
C   000330  Modified array declarations.  (JEC)
C
C***CATEGORY NO.  E1A
C***KEYWORDS  INTERPOLATION, THREE-DIMENSIONS, GRIDDED DATA, SPLINES,
C             PIECEWISE POLYNOMIALS
C***AUTHOR  BOISVERT, RONALD, NBS
C             SCIENTIFIC COMPUTING DIVISION
C             NATIONAL BUREAU OF STANDARDS
C             WASHINGTON, DC 20234
C***PURPOSE  DB3VAL EVALUATES THE PIECEWISE POLYNOMIAL INTERPOLATING
C            FUNCTION CONSTRUCTED BY THE ROUTINE B3INK OR ONE OF ITS
C            PARTIAL DERIVATIVES.
C            DOUBLE PRECISION VERSION OF B3VAL.
C***DESCRIPTION
C
C   DB3VAL  evaluates   the   tensor   product   piecewise   polynomial
C   interpolant constructed  by  the  routine  DB3INK  or  one  of  its
C   derivatives  at  the  point  (XVAL,YVAL,ZVAL).  To   evaluate   the
C   interpolant  itself,  set  IDX=IDY=IDZ=0,  to  evaluate  the  first
C   partial with respect to x, set IDX=1,IDY=IDZ=0, and so on.
C
C   DB3VAL returns 0.0D0 if (XVAL,YVAL,ZVAL) is out of range. That is,
C            XVAL.LT.TX(1) .OR. XVAL.GT.TX(NX+KX) .OR.
C            YVAL.LT.TY(1) .OR. YVAL.GT.TY(NY+KY) .OR.
C            ZVAL.LT.TZ(1) .OR. ZVAL.GT.TZ(NZ+KZ)
C   If the knots TX, TY, and TZ were chosen by  DB3INK,  then  this  is
C   equivalent to
C            XVAL.LT.X(1) .OR. XVAL.GT.X(NX)+EPSX .OR.
C            YVAL.LT.Y(1) .OR. YVAL.GT.Y(NY)+EPSY .OR.
C            ZVAL.LT.Z(1) .OR. ZVAL.GT.Z(NZ)+EPSZ
C   where EPSX = 0.1*(X(NX)-X(NX-1)), EPSY =  0.1*(Y(NY)-Y(NY-1)),  and
C   EPSZ = 0.1*(Z(NZ)-Z(NZ-1)).
C
C   The input quantities TX, TY, TZ, NX, NY, NZ, KX, KY, KZ, and  BCOEF
C   should remain unchanged since the last call of DB3INK.
C
C
C   I N P U T
C   ---------
C
C   XVAL    Double precision scalar
C           X coordinate of evaluation point.
C
C   YVAL    Double precision scalar
C           Y coordinate of evaluation point.
C
C   ZVAL    Double precision scalar
C           Z coordinate of evaluation point.
C
C   IDX     Integer scalar
C           X derivative of piecewise polynomial to evaluate.
C
C   IDY     Integer scalar
C           Y derivative of piecewise polynomial to evaluate.
C
C   IDZ     Integer scalar
C           Z derivative of piecewise polynomial to evaluate.
C
C   TX      Double precision 1D array (size NX+KX)
C           Sequence of knots defining the piecewise polynomial in
C           the x direction.  (Same as in last call to DB3INK.)
C
C   TY      Double precision 1D array (size NY+KY)
C           Sequence of knots defining the piecewise polynomial in
C           the y direction.  (Same as in last call to DB3INK.)
C
C   TZ      Double precision 1D array (size NZ+KZ)
C           Sequence of knots defining the piecewise polynomial in
C           the z direction.  (Same as in last call to DB3INK.)
C
C   NX      Integer scalar
C           The number of interpolation points in x.
C           (Same as in last call to DB3INK.)
C
C   NY      Integer scalar
C           The number of interpolation points in y.
C           (Same as in last call to DB3INK.)
C
C   NZ      Integer scalar
C           The number of interpolation points in z.
C           (Same as in last call to DB3INK.)
C
C   KX      Integer scalar
C           Order of polynomial pieces in x.
C           (Same as in last call to DB3INK.)
C
C   KY      Integer scalar
C           Order of polynomial pieces in y.
C           (Same as in last call to DB3INK.)
C
C   KZ      Integer scalar
C           Order of polynomial pieces in z.
C           (Same as in last call to DB3INK.)
C
C   BCOEF   Double precision 2D array (size NX by NY by NZ)
C           The B-spline coefficients computed by DB3INK.
C
C   WORK    Double precision 1D array (size KY*KZ+3*max(KX,KY,KZ)+KZ)
C           A working storage array.
C
C***REFERENCES  CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES,
C                 SPRINGER-VERLAG, NEW YORK, 1978.
C***ROUTINES CALLED  DINTRV,DBVALU
C***END PROLOGUE  DB3VAL
C
C<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
C
C   MODIFICATION
C   ------------
C
C   ADDED CHECK TO SEE IF X OR Y IS OUT OF RANGE, IF SO, RETURN 0.0
C
C   R.F. BOISVERT, NIST
C   22 FEB 00
C
C<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
C  ------------
C  DECLARATIONS
C  ------------
C
C  PARAMETERS
C
      INTEGER
     *        IDX, IDY, IDZ, NX, NY, NZ, KX, KY, KZ
      DOUBLE PRECISION
     *     XVAL, YVAL, ZVAL, TX(*), TY(*), TZ(*), BCOEF(NX,NY,NZ),
     *     WORK(*)
C
C  LOCAL VARIABLES
C
      INTEGER
     *        ILOY, ILOZ, INBVX, INBV1, INBV2, LEFTY, LEFTZ, MFLAG,
     *        KCOLY, KCOLZ, IZ, IZM1, IW, I, J, K
      DOUBLE PRECISION
     *     DBVALU
C
      DATA ILOY /1/,  ILOZ /1/,  INBVX /1/
C     SAVE ILOY    ,  ILOZ    ,  INBVX
C
C
C***FIRST EXECUTABLE STATEMENT
      DB3VAL = 0.0D0
C  NEXT STATEMENT - RFB MOD
      IF (XVAL.LT.TX(1) .OR. XVAL.GT.TX(NX+KX) .OR.
     +    YVAL.LT.TY(1) .OR. YVAL.GT.TY(NY+KY) .OR.
     +    ZVAL.LT.TZ(1) .OR. ZVAL.GT.TZ(NZ+KZ)) GO TO 100
      CALL DINTRV(TY,NY+KY,YVAL,ILOY,LEFTY,MFLAG)
      IF (MFLAG .NE. 0)  GO TO 100
      CALL DINTRV(TZ,NZ+KZ,ZVAL,ILOZ,LEFTZ,MFLAG)
      IF (MFLAG .NE. 0)  GO TO 100
         IZ = 1 + KY*KZ
         IW = IZ + KZ
         KCOLZ = LEFTZ - KZ
         I = 0
         DO 50 K=1,KZ
            KCOLZ = KCOLZ + 1
            KCOLY = LEFTY - KY
            DO 50 J=1,KY
               I = I + 1
               KCOLY = KCOLY + 1
               WORK(I) = DBVALU(TX,BCOEF(1,KCOLY,KCOLZ),NX,KX,IDX,XVAL,
     *                           INBVX,WORK(IW))
   50    CONTINUE
         INBV1 = 1
         IZM1 = IZ - 1
         KCOLY = LEFTY - KY + 1
         DO 60 K=1,KZ
            I = (K-1)*KY + 1
            J = IZM1 + K
            WORK(J) = DBVALU(TY(KCOLY),WORK(I),KY,KY,IDY,YVAL,
     *                           INBV1,WORK(IW))
  60     CONTINUE
         INBV2 = 1
         KCOLZ = LEFTZ - KZ + 1
         DB3VAL = DBVALU(TZ(KCOLZ),WORK(IZ),KZ,KZ,IDZ,ZVAL,INBV2,
     *                  WORK(IW))
  100 CONTINUE
      RETURN
      END

      SUBROUTINE DB3INK(X,NX,Y,NY,Z,NZ,FCN,LDF1,LDF2,KX,KY,KZ,TX,TY,TZ,
     *  BCOEF,WORK,IFLAG)
C***BEGIN PROLOGUE  DB3INK
C***DATE WRITTEN   25 MAY 1982
C***REVISION DATE  25 MAY 1982
C***REVISION HISTORY  (YYMMDD)
C   000330  Modified array declarations.  (JEC)
C
C***CATEGORY NO.  E1A
C***KEYWORDS  INTERPOLATION, THREE-DIMENSIONS, GRIDDED DATA, SPLINES,
C             PIECEWISE POLYNOMIALS
C***AUTHOR  BOISVERT, RONALD, NBS
C             SCIENTIFIC COMPUTING DIVISION
C             NATIONAL BUREAU OF STANDARDS
C             WASHINGTON, DC 20234
C***PURPOSE  DOUBLE PRECISION VERSION OF DB3INK
C            DB3INK DETERMINES A PIECEWISE POLYNOMIAL FUNCTION THAT
C            INTERPOLATES THREE-DIMENSIONAL GRIDDED DATA. USERS SPECIFY
C            THE POLYNOMIAL ORDER (DEGREE+1) OF THE INTERPOLANT AND
C            (OPTIONALLY) THE KNOT SEQUENCE.
C***DESCRIPTION
C
C   DB3INK determines the parameters of a  function  that  interpolates
C   the three-dimensional gridded data (X(i),Y(j),Z(k),FCN(i,j,k))  for
C   i=1,..,NX, j=1,..,NY, and k=1,..,NZ. The interpolating function and
C   its derivatives may  subsequently  be  evaluated  by  the  function
C   DB3VAL.
C
C   The interpolating  function  is  a  piecewise  polynomial  function
C   represented as a tensor product of one-dimensional  B-splines.  The
C   form of this function is
C
C                      NX   NY   NZ
C        S(x,y,z)  =  SUM  SUM  SUM  a   U (x) V (y) W (z)
C                     i=1  j=1  k=1   ij  i     j     k
C
C   where the functions U(i), V(j), and  W(k)  are  one-dimensional  B-
C   spline basis functions. The coefficients a(i,j) are chosen so that
C
C   S(X(i),Y(j),Z(k)) = FCN(i,j,k)  for i=1,..,NX, j=1,..,NY, k=1,..,NZ
C
C   Note that for fixed values of y  and  z  S(x,y,z)  is  a  piecewise
C   polynomial function of x alone, for fixed values of x and z  S(x,y,
C   z) is a piecewise polynomial function of y  alone,  and  for  fixed
C   values of x and y S(x,y,z)  is  a  function  of  z  alone.  In  one
C   dimension a piecewise polynomial may be created by  partitioning  a
C   given interval into subintervals and defining a distinct polynomial
C   piece on each one. The points where adjacent subintervals meet  are
C   called knots. Each of the functions U(i), V(j), and W(k) above is a
C   piecewise polynomial.
C
C   Users of DB3INK choose  the  order  (degree+1)  of  the  polynomial
C   pieces used to define the piecewise polynomial in each of the x, y,
C   and z directions (KX, KY, and KZ). Users also may define their  own
C   knot sequence in x, y, and z separately (TX, TY, and TZ). If IFLAG=
C   0, however, DB3INK will choose sequences of knots that result in  a
C   piecewise  polynomial  interpolant  with  KX-2  continuous  partial
C   derivatives in x, KY-2 continuous partial derivatives in y, and KZ-
C   2 continuous partial derivatives in z. (KX  knots  are  taken  near
C   each endpoint in x, not-a-knot end conditions  are  used,  and  the
C   remaining knots are placed at data points  if  KX  is  even  or  at
C   midpoints between data points if KX is odd. The y and z  directions
C   are treated similarly.)
C
C   After a call to DB3INK, all information  necessary  to  define  the
C   interpolating function are contained in the parameters NX, NY,  NZ,
C   KX, KY, KZ, TX, TY, TZ, and BCOEF. These quantities should  not  be
C   altered until after the last call of the evaluation routine DB3VAL.
C
C
C   I N P U T
C   ---------
C
C   X       Double precision 1D array (size NX)
C           Array of x abcissae. Must be strictly increasing.
C
C   NX      Integer scalar (.GE. 3)
C           Number of x abcissae.
C
C   Y       Double precision 1D array (size NY)
C           Array of y abcissae. Must be strictly increasing.
C
C   NY      Integer scalar (.GE. 3)
C           Number of y abcissae.
C
C   Z       Double precision 1D array (size NZ)
C           Array of z abcissae. Must be strictly increasing.
C
C   NZ      Integer scalar (.GE. 3)
C           Number of z abcissae.
C
C   FCN     Double precision 3D array (size LDF1 by LDF2 by NY)
C           Array of function values to interpolate. FCN(I,J,K) should
C           contain the function value at the point (X(I),Y(J),Z(K))
C
C   LDF1    Integer scalar (.GE. NX)
C           The actual first dimension of FCN used in the
C           calling program.
C
C   LDF2    Integer scalar (.GE. NY)
C           The actual second dimension of FCN used in the calling
C           program.
C
C   KX      Integer scalar (.GE. 2, .LT. NX)
C           The order of spline pieces in x.
C           (Order = polynomial degree + 1)
C
C   KY      Integer scalar (.GE. 2, .LT. NY)
C           The order of spline pieces in y.
C           (Order = polynomial degree + 1)
C
C   KZ      Integer scalar (.GE. 2, .LT. NZ)
C           The order of spline pieces in z.
C           (Order = polynomial degree + 1)
C
C
C   I N P U T   O R   O U T P U T
C   -----------------------------
C
C   TX      Double precision 1D array (size NX+KX)
C           The knots in the x direction for the spline interpolant.
C           If IFLAG=0 these are chosen by DB3INK.
C           If IFLAG=1 these are specified by the user.
C                      (Must be non-decreasing.)
C
C   TY      Double precision 1D array (size NY+KY)
C           The knots in the y direction for the spline interpolant.
C           If IFLAG=0 these are chosen by DB3INK.
C           If IFLAG=1 these are specified by the user.
C                      (Must be non-decreasing.)
C
C   TZ      Double precision 1D array (size NZ+KZ)
C           The knots in the z direction for the spline interpolant.
C           If IFLAG=0 these are chosen by DB3INK.
C           If IFLAG=1 these are specified by the user.
C                      (Must be non-decreasing.)
C
C
C   O U T P U T
C   -----------
C
C   BCOEF   Double precision 3D array (size NX by NY by NZ)
C           Array of coefficients of the B-spline interpolant.
C           This may be the same array as FCN.
C
C
C   M I S C E L L A N E O U S
C   -------------------------
C
C   WORK    Double precision 1D array (size NX*NY*NZ + max( 2*KX*(NX+1),
C                             2*KY*(NY+1), 2*KZ*(NZ+1) )
C           Array of working storage.
C
C   IFLAG   Integer scalar.
C           On input:  0 == knot sequence chosen by B2INK
C                      1 == knot sequence chosen by user.
C           On output: 1 == successful execution
C                      2 == IFLAG out of range
C                      3 == NX out of range
C                      4 == KX out of range
C                      5 == X not strictly increasing
C                      6 == TX not non-decreasing
C                      7 == NY out of range
C                      8 == KY out of range
C                      9 == Y not strictly increasing
C                     10 == TY not non-decreasing
C                     11 == NZ out of range
C                     12 == KZ out of range
C                     13 == Z not strictly increasing
C                     14 == TY not non-decreasing
C
C***REFERENCES  CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES,
C                 SPRINGER-VERLAG, NEW YORK, 1978.
C               CARL DE BOOR, EFFICIENT COMPUTER MANIPULATION OF TENSOR
C                 PRODUCTS, ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE,
C                 VOL. 5 (1979), PP. 173-182.
C***ROUTINES CALLED  DBTPCF,DBKNOT
C***END PROLOGUE  DB3INK
C
C  ------------
C  DECLARATIONS
C  ------------
C
C  PARAMETERS
C
      INTEGER
     *        NX, NY, NZ, LDF1, LDF2, KX, KY, KZ, IFLAG
      DOUBLE PRECISION
     *     X(NX), Y(NY), Z(NZ), FCN(LDF1,LDF2,NZ), TX(*), TY(*), TZ(*),
     *     BCOEF(NX,NY,NZ), WORK(*)
C
C  LOCAL VARIABLES
C
      INTEGER
     *        I, J, LOC, IW, NPK
C
C  -----------------------
C  CHECK VALIDITY OF INPUT
C  -----------------------
C
C***FIRST EXECUTABLE STATEMENT
      IF ((IFLAG .LT. 0) .OR. (IFLAG .GT. 1))  GO TO 920
      IF (NX .LT. 3)  GO TO 930
      IF (NY .LT. 3)  GO TO 970
      IF (NZ .LT. 3)  GO TO 1010
      IF ((KX .LT. 2) .OR. (KX .GE. NX))  GO TO 940
      IF ((KY .LT. 2) .OR. (KY .GE. NY))  GO TO 980
      IF ((KZ .LT. 2) .OR. (KZ .GE. NZ))  GO TO 1020
      DO 10 I=2,NX
         IF (X(I) .LE. X(I-1))  GO TO 950
   10 CONTINUE
      DO 20 I=2,NY
         IF (Y(I) .LE. Y(I-1))  GO TO 990
   20 CONTINUE
      DO 30 I=2,NZ
         IF (Z(I) .LE. Z(I-1))  GO TO 1030
   30 CONTINUE
      IF (IFLAG .EQ. 0)  GO TO 70
         NPK = NX + KX
         DO 40 I=2,NPK
            IF (TX(I) .LT. TX(I-1))  GO TO 960
   40    CONTINUE
         NPK = NY + KY
         DO 50 I=2,NPK
            IF (TY(I) .LT. TY(I-1))  GO TO 1000
   50    CONTINUE
         NPK = NZ + KZ
         DO 60 I=2,NPK
            IF (TZ(I) .LT. TZ(I-1))  GO TO 1040
   60    CONTINUE
   70 CONTINUE
C
C  ------------
C  CHOOSE KNOTS
C  ------------
C
      IF (IFLAG .NE. 0)  GO TO 100
         CALL DBKNOT(X,NX,KX,TX)
         CALL DBKNOT(Y,NY,KY,TY)
         CALL DBKNOT(Z,NZ,KZ,TZ)
  100 CONTINUE
C
C  -------------------------------
C  CONSTRUCT B-SPLINE COEFFICIENTS
C  -------------------------------
C
      IFLAG = 1
      IW = NX*NY*NZ + 1
C
C     COPY FCN TO WORK IN PACKED FOR DBTPCF
      LOC = 0
      DO 510 K=1,NZ
         DO 510 J=1,NY
            DO 510 I=1,NX
               LOC = LOC + 1
               WORK(LOC) = FCN(I,J,K)
  510 CONTINUE
C
      CALL DBTPCF(X,NX,WORK,NX,NY*NZ,TX,KX,BCOEF,WORK(IW))
      CALL DBTPCF(Y,NY,BCOEF,NY,NX*NZ,TY,KY,WORK,WORK(IW))
      CALL DBTPCF(Z,NZ,WORK,NZ,NX*NY,TZ,KZ,BCOEF,WORK(IW))
      GO TO 9999
C
C  -----
C  EXITS
C  -----
C
  920 CONTINUE
!      CALL XERRWV('DB3INK -  IFLAG=I1 IS OUT OF RANGE.',
!     *            35,2,1,1,IFLAG,I2,0,R1,R2)
      IFLAG = 2
      GO TO 9999
C
  930 CONTINUE
      IFLAG = 3
!      CALL XERRWV('DB3INK -  NX=I1 IS OUT OF RANGE.',
!     *            32,IFLAG,1,1,NX,I2,0,R1,R2)
      GO TO 9999
C
  940 CONTINUE
      IFLAG = 4
!      CALL XERRWV('DB3INK -  KX=I1 IS OUT OF RANGE.',
!     *            32,IFLAG,1,1,KX,I2,0,R1,R2)
      GO TO 9999
C
  950 CONTINUE
      IFLAG = 5
!      CALL XERRWV('DB3INK -  X ARRAY MUST BE STRICTLY INCREASING.',
!     *            46,IFLAG,1,0,I1,I2,0,R1,R2)
      GO TO 9999
C
  960 CONTINUE
      IFLAG = 6
!      CALL XERRWV('DB3INK -  TX ARRAY MUST BE NON-DECREASING.',
!     *            42,IFLAG,1,0,I1,I2,0,R1,R2)
      GO TO 9999
C
  970 CONTINUE
      IFLAG = 7
!      CALL XERRWV('DB3INK -  NY=I1 IS OUT OF RANGE.',
!     *            32,IFLAG,1,1,NY,I2,0,R1,R2)
      GO TO 9999
C
  980 CONTINUE
      IFLAG = 8
!      CALL XERRWV('DB3INK -  KY=I1 IS OUT OF RANGE.',
!     *            32,IFLAG,1,1,KY,I2,0,R1,R2)
      GO TO 9999
C
  990 CONTINUE
      IFLAG = 9
!      CALL XERRWV('DB3INK -  Y ARRAY MUST BE STRICTLY INCREASING.',
!     *            46,IFLAG,1,0,I1,I2,0,R1,R2)
      GO TO 9999
C
 1000 CONTINUE
      IFLAG = 10
!      CALL XERRWV('DB3INK -  TY ARRAY MUST BE NON-DECREASING.',
!     *            42,IFLAG,1,0,I1,I2,0,R1,R2)
      GO TO 9999
C
 1010 CONTINUE
      IFLAG = 11
!      CALL XERRWV('DB3INK -  NZ=I1 IS OUT OF RANGE.',
!     *            32,IFLAG,1,1,NZ,I2,0,R1,R2)
      GO TO 9999
C
 1020 CONTINUE
      IFLAG = 12
!      CALL XERRWV('DB3INK -  KZ=I1 IS OUT OF RANGE.',
!     *            32,IFLAG,1,1,KZ,I2,0,R1,R2)
      GO TO 9999
C
 1030 CONTINUE
      IFLAG = 13
!      CALL XERRWV('DB3INK -  Z ARRAY MUST BE STRICTLY INCREASING.',
!     *            46,IFLAG,1,0,I1,I2,0,R1,R2)
      GO TO 9999
C
 1040 CONTINUE
      IFLAG = 14
!      CALL XERRWV('DB3INK -  TZ ARRAY MUST BE NON-DECREASING.',
!     *            42,IFLAG,1,0,I1,I2,0,R1,R2)
      GO TO 9999
C
 9999 CONTINUE
      RETURN
      END