File: dwpow1.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (51 lines) | stat: -rw-r--r-- 1,565 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
      subroutine dwpow1(n,v,iv,pr,pi,ip,rr,ri,ir,ierr)
c!purpose
c     computes V^P with V real vector and P complex vector
c!calling sequence
c     subroutine dwpow1(n,v,iv,pr,pi,ip,rr,ri,ir,ierr)
c     integer n,iv,ip,ir,ierr
c     double precision v(*),pr(*),pi(*),rr(*),ri(*)
c
c     n    : number of elements of V and P vectors
c     v    : array containing  V elements 
c            V(i)=v(1+(i-1)*iv)
c     iv   : increment between two V elements in v (may be 0)
c     pr   : array containing real part of P elements 
c            real(P(i))=pr(1+(i-1)*iv)
c     pi   : array containing imaginary part of P elements 
c            imag(P(i))=pi(1+(i-1)*iv)
c     ip   : increment between two P elements in p (may be 0)
c     rr   : array containing real part of the results vector R:
c            real(R(i))=rr(1+(i-1)*ir)
c     ri   : array containing imaginary part of the results vector R:
c            imag(R(i))=ri(1+(i-1)*ir)
c     ir   : increment between two R elements in rr and ri
c     ierr : error flag
c            ierr=0 if ok
c            ierr=1 if 0**0
c            ierr=2 if  0**k with k<0
c!origin
c Serge Steer INRIA 1996
c!
c     Copyright INRIA
      integer n,iv,ierr,ierr1
      double precision v(*),pr(*),pi(*),rr(*),ri(*)
c
      ierr=0
      iscmpl=0
c

      ii=1
      iip=1
      iir=1
      do 20 i=1,n
         call dwpowe(v(ii),pr(iip),pi(iip),rr(iir),ri(iir),ierr1)
c         if(ierr.ne.0) return
         ierr=max(ierr,ierr1)
         ii=ii+iv
         iip=iip+ip
         iir=iir+ir
 20   continue
c
      return
      end