File: dxlegf.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (1636 lines) | stat: -rw-r--r-- 54,469 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
*
*  original code from the Slatec library
*
*  slight modifications by Bruno Pincon <Bruno.Pincon@iecn.u-nancy.fr> :
* 
*     1/ some (minor modifications) so that the "enter" is
*        now X and not THETA (X=cos(THETA)). This leads to
*        better accuracy for x near 0 and seems more
*        natural but may be there is some drawback ? 
*     2/ remove parts which send warning messages to the 
*        Slatec XERMSG routine (nevertheless all the errors
*        flags are communicated throw IERROR).
*        Normaly the scilab interface verify the validity of the
*        input arguments but the verifications in this code are
*        still here.
*     3/ substitute calls to I1MACH by calls to dlamch
*        (Scilab uses dlamch and not I1MACH to get machine
*        parameter so it seems more logical).
*
*    IERROR values :
*          210 :  DNU1, NUDIFF, MU1, MU2, or ID not valid
*          211 :  X out of range (must be in [0,1)
*          201, 202, 203, 204 : invalid input was provided to DXSET
*                       (should not occured in IEEE floating point)
*          205, 206 : internal consistency error occurred in DXSET 
*                     (probably due to a software malfunction in the 
*                      library routine I1MACH) Should not occured  
*                      in IEEE floating point, if dlamch works well.
*          207 : an overflow or underflow of an extended-range number
*                was detected in DXADJ.
*          208 : an error which may occur in DXC210 but this one is not
*                call from DXLEGF (don't know why it is given below).
*
*     Normally on the return to scilab, only 207 may be present.


*DECK DXLEGF
      SUBROUTINE DXLEGF(DNU1, NUDIFF, MU1, MU2, X, ID, PQA, IPQA,
     1   IERROR)
C***BEGIN PROLOGUE  DXLEGF
C***PURPOSE  Compute normalized Legendre polynomials and associated
C            Legendre functions.
C***LIBRARY   SLATEC
C***CATEGORY  C3A2, C9
C***TYPE      DOUBLE PRECISION (XLEGF-S, DXLEGF-D)
C***KEYWORDS  LEGENDRE FUNCTIONS
C***AUTHOR  Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C
C   DXLEGF: Extended-range Double-precision Legendre Functions
C
C   A feature of the DXLEGF subroutine for Legendre functions is
C the use of extended-range arithmetic, a software extension of
C ordinary floating-point arithmetic that greatly increases the
C exponent range of the representable numbers. This avoids the
C need for scaling the solutions to lie within the exponent range
C of the most restrictive manufacturer's hardware. The increased
C exponent range is achieved by allocating an integer storage
C location together with each floating-point storage location.
C
C   The interpretation of the pair (X,I) where X is floating-point
C and I is integer is X*(IR**I) where IR is the internal radix of
C the computer arithmetic.
C
C   This subroutine computes one of the following vectors:
C
C 1. Legendre function of the first kind of negative order, either
C    a. P(-MU1,NU,X), P(-MU1-1,NU,X), ..., P(-MU2,NU,X) or
C    b. P(-MU,NU1,X), P(-MU,NU1+1,X), ..., P(-MU,NU2,X)
C 2. Legendre function of the second kind, either
C    a. Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X) or
C    b. Q(MU,NU1,X), Q(MU,NU1+1,X), ..., Q(MU,NU2,X)
C 3. Legendre function of the first kind of positive order, either
C    a. P(MU1,NU,X), P(MU1+1,NU,X), ..., P(MU2,NU,X) or
C    b. P(MU,NU1,X), P(MU,NU1+1,X), ..., P(MU,NU2,X)
C 4. Normalized Legendre polynomials, either
C    a. PN(MU1,NU,X), PN(MU1+1,NU,X), ..., PN(MU2,NU,X) or
C    b. PN(MU,NU1,X), PN(MU,NU1+1,X), ..., PN(MU,NU2,X)
C
C where X = COS(THETA).
C
C   The input values to DXLEGF are DNU1, NUDIFF, MU1, MU2, THETA (now X),
C and ID. These must satisfy
C
C    DNU1 is DOUBLE PRECISION and greater than or equal to -0.5;
C    NUDIFF is INTEGER and non-negative;
C    MU1 is INTEGER and non-negative;
C    MU2 is INTEGER and greater than or equal to MU1;

C    THETA is DOUBLE PRECISION and in the half-open interval (0,PI/2];
*    modification :  X is given (and not THETA) X must be in [0,1)

C    ID is INTEGER and equal to 1, 2, 3 or 4;
C
C and  additionally either NUDIFF = 0 or MU2 = MU1.
C
C   If ID=1 and NUDIFF=0, a vector of type 1a above is computed
C with NU=DNU1.
C
C   If ID=1 and MU1=MU2, a vector of type 1b above is computed
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
C
C   If ID=2 and NUDIFF=0, a vector of type 2a above is computed
C with NU=DNU1.
C
C   If ID=2 and MU1=MU2, a vector of type 2b above is computed
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
C
C   If ID=3 and NUDIFF=0, a vector of type 3a above is computed
C with NU=DNU1.
C
C   If ID=3 and MU1=MU2, a vector of type 3b above is computed
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
C
C   If ID=4 and NUDIFF=0, a vector of type 4a above is computed
C with NU=DNU1.
C
C   If ID=4 and MU1=MU2, a vector of type 4b above is computed
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
C
C   In each case the vector of computed Legendre function values
C is returned in the extended-range vector (PQA(I),IPQA(I)). The
C length of this vector is either MU2-MU1+1 or NUDIFF+1.
C
C   Where possible, DXLEGF returns IPQA(I) as zero. In this case the
C value of the Legendre function is contained entirely in PQA(I),
C so it can be used in subsequent computations without further
C consideration of extended-range arithmetic. If IPQA(I) is nonzero,
C then the value of the Legendre function is not representable in
C floating-point because of underflow or overflow. The program that
C calls DXLEGF must test IPQA(I) to ensure correct usage.
C
C   IERROR is an error indicator. If no errors are detected, IERROR=0
C when control returns to the calling routine. If an error is detected,
C IERROR is returned as nonzero. The calling routine must check the
C value of IERROR.
C
C   If IERROR=210 or 211, invalid input was provided to DXLEGF.
C   If IERROR=201,202,203, or 204, invalid input was provided to DXSET.
C   If IERROR=205 or 206, an internal consistency error occurred in
C DXSET (probably due to a software malfunction in the library routine
C I1MACH).
C   If IERROR=207, an overflow or underflow of an extended-range number
C was detected in DXADJ.
C   If IERROR=208, an overflow or underflow of an extended-range number
C was detected in DXC210.
C
C***SEE ALSO  DXSET
C***REFERENCES  Olver and Smith, Associated Legendre Functions on the
C                 Cut, J Comp Phys, v 51, n 3, Sept 1983, pp 502--518.
C               Smith, Olver and Lozier, Extended-Range Arithmetic and
C                 Normalized Legendre Polynomials, ACM Trans on Math
C                 Softw, v 7, n 1, March 1981, pp 93--105.
C***ROUTINES CALLED  DXPMU, DXPMUP, DXPNRM, DXPQNU, DXQMU, DXQNU, DXRED,
C                    DXSET, XERMSG
C***REVISION HISTORY  (YYMMDD)
C   820728  DATE WRITTEN
C   890126  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C           CALLs to XERROR changed to CALLs to XERMSG.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXLEGF
      DOUBLE PRECISION PQA,DNU1,DNU2,SX,X,PI2
      DIMENSION PQA(*),IPQA(*)
C
C***FIRST EXECUTABLE STATEMENT  DXLEGF
      IERROR=0
      CALL DXSET (0, 0, 0.0D0, 0,IERROR)
      IF (IERROR.NE.0) RETURN
      PI2=2.D0*ATAN(1.D0)
C
C        ZERO OUTPUT ARRAYS
C
      L=(MU2-MU1)+NUDIFF+1
      DO 290 I=1,L
      PQA(I)=0.D0
  290 IPQA(I)=0
C
C        CHECK FOR VALID INPUT VALUES
C
*** normally all these are verified by the scilab interface
      IF(NUDIFF.LT.0) GO TO 400
      IF(DNU1.LT.-.5D0) GO TO 400
      IF(MU2.LT.MU1) GO TO 400
      IF(MU1.LT.0) GO TO 400
*      IF(THETA.LE.0.D0.OR.THETA.GT.PI2) GO TO 420
      IF(X.LT.0.D0.OR.X.GE.1.d0) GO TO 420
      IF(ID.LT.1.OR.ID.GT.4) GO TO 400
      IF((MU1.NE.MU2).AND.(NUDIFF.GT.0)) GO TO 400
C
C        IF DNU1 IS NOT AN INTEGER, NORMALIZED P(MU,DNU,X)
C        CANNOT BE CALCULATED.  IF DNU1 IS AN INTEGER AND
C        MU1.GT.DNU2 THEN ALL VALUES OF P(+MU,DNU,X) AND
C        NORMALIZED P(MU,NU,X) WILL BE ZERO.
C
      DNU2=DNU1+NUDIFF
      IF((ID.EQ.3).AND.(MOD(DNU1,1.D0).NE.0.D0)) GO TO 295
      IF((ID.EQ.4).AND.(MOD(DNU1,1.D0).NE.0.D0)) GO TO 400
      IF((ID.EQ.3.OR.ID.EQ.4).AND.MU1.GT.DNU2) RETURN
  295 CONTINUE
C
*      X=COS(THETA)
*      SX=1.D0/SIN(THETA)
      SX=1.D0/SQRT((1.d0-X)*(1.d0+X))
      IF(ID.EQ.2) GO TO 300
      IF(MU2-MU1.LE.0) GO TO 360
C
C        FIXED NU, VARIABLE MU
C        CALL DXPMU TO CALCULATE P(-MU1,NU,X),....,P(-MU2,NU,X)
C
      CALL DXPMU(DNU1,DNU2,MU1,MU2,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      GO TO 380
C
  300 IF(MU2.EQ.MU1) GO TO 320
C
C        FIXED NU, VARIABLE MU
C        CALL DXQMU TO CALCULATE Q(MU1,NU,X),....,Q(MU2,NU,X)
C
      CALL DXQMU(DNU1,DNU2,MU1,MU2,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      GO TO 390
C
C        FIXED MU, VARIABLE NU
C        CALL DXQNU TO CALCULATE Q(MU,DNU1,X),....,Q(MU,DNU2,X)
C
  320 CALL DXQNU(DNU1,DNU2,MU1,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      GO TO 390
C
C        FIXED MU, VARIABLE NU
C        CALL DXPQNU TO CALCULATE P(-MU,DNU1,X),....,P(-MU,DNU2,X)
C
  360 CALL DXPQNU(DNU1,DNU2,MU1,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
C
C        IF ID = 3, TRANSFORM P(-MU,NU,X) VECTOR INTO
C        P(MU,NU,X) VECTOR.
C
  380 IF(ID.EQ.3) CALL DXPMUP(DNU1,DNU2,MU1,MU2,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
C
C        IF ID = 4, TRANSFORM P(-MU,NU,X) VECTOR INTO
C        NORMALIZED P(MU,NU,X) VECTOR.
C
      IF(ID.EQ.4) CALL DXPNRM(DNU1,DNU2,MU1,MU2,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
C
C        PLACE RESULTS IN REDUCED FORM IF POSSIBLE
C        AND RETURN TO MAIN PROGRAM.
C
  390 DO 395 I=1,L
      CALL DXRED(PQA(I),IPQA(I),IERROR)
      IF (IERROR.NE.0) RETURN
  395 CONTINUE
      RETURN
C
C        *****     ERROR TERMINATION     *****
C
*  400 CALL XERMSG ('SLATEC', 'DXLEGF',
*     +             'DNU1, NUDIFF, MU1, MU2, or ID not valid', 210, 1)
 400  continue
      IERROR=210
      RETURN
*  420 CALL XERMSG ('SLATEC', 'DXLEGF', 'THETA out of range', 211, 1)
 420  continue
      IERROR=211
      RETURN
      END
*DECK DXPMU
      SUBROUTINE DXPMU (NU1, NU2, MU1, MU2, X, SX, ID, PQA, IPQA,
     1   IERROR)
C***BEGIN PROLOGUE  DXPMU
C***SUBSIDIARY
C***PURPOSE  To compute the values of Legendre functions for DXLEGF.
C            Method: backward mu-wise recurrence for P(-MU,NU,X) for
C            fixed nu to obtain P(-MU2,NU1,X), P(-(MU2-1),NU1,X), ...,
C            P(-MU1,NU1,X) and store in ascending mu order.
C***LIBRARY   SLATEC
C***CATEGORY  C3A2, C9
C***TYPE      DOUBLE PRECISION (XPMU-S, DXPMU-D)
C***KEYWORDS  LEGENDRE FUNCTIONS
C***AUTHOR  Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED  DXADD, DXADJ, DXPQNU
C***REVISION HISTORY  (YYMMDD)
C   820728  DATE WRITTEN
C   890126  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXPMU
      DOUBLE PRECISION PQA,NU1,NU2,P0,X,SX,X1,X2
      DIMENSION PQA(*),IPQA(*)
C
C        CALL DXPQNU TO OBTAIN P(-MU2,NU,X)
C
C***FIRST EXECUTABLE STATEMENT  DXPMU
      IERROR=0
      CALL DXPQNU(NU1,NU2,MU2,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      P0=PQA(1)
      IP0=IPQA(1)
      MU=MU2-1
C
C        CALL DXPQNU TO OBTAIN P(-MU2-1,NU,X)
C
      CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      N=MU2-MU1+1
      PQA(N)=P0
      IPQA(N)=IP0
      IF(N.EQ.1) GO TO 300
      PQA(N-1)=PQA(1)
      IPQA(N-1)=IPQA(1)
      IF(N.EQ.2) GO TO 300
      J=N-2
  290 CONTINUE
C
C        BACKWARD RECURRENCE IN MU TO OBTAIN
C              P(-MU2,NU1,X),P(-(MU2-1),NU1,X),....P(-MU1,NU1,X)
C              USING
C              (NU-MU)*(NU+MU+1.)*P(-(MU+1),NU,X)=
C                2.*MU*X*SQRT((1./(1.-X**2))*P(-MU,NU,X)-P(-(MU-1),NU,X)
C
      X1=2.D0*MU*X*SX*PQA(J+1)
      X2=-(NU1-MU)*(NU1+MU+1.D0)*PQA(J+2)
      CALL DXADD(X1,IPQA(J+1),X2,IPQA(J+2),PQA(J),IPQA(J),IERROR)
      IF (IERROR.NE.0) RETURN
      CALL DXADJ(PQA(J),IPQA(J),IERROR)
      IF (IERROR.NE.0) RETURN
      IF(J.EQ.1) GO TO 300
      J=J-1
      MU=MU-1
      GO TO 290
  300 RETURN
      END
*DECK DXPMUP
      SUBROUTINE DXPMUP (NU1, NU2, MU1, MU2, PQA, IPQA, IERROR)
C***BEGIN PROLOGUE  DXPMUP
C***SUBSIDIARY
C***PURPOSE  To compute the values of Legendre functions for DXLEGF.
C            This subroutine transforms an array of Legendre functions
C            of the first kind of negative order stored in array PQA
C            into Legendre functions of the first kind of positive
C            order stored in array PQA. The original array is destroyed.
C***LIBRARY   SLATEC
C***CATEGORY  C3A2, C9
C***TYPE      DOUBLE PRECISION (XPMUP-S, DXPMUP-D)
C***KEYWORDS  LEGENDRE FUNCTIONS
C***AUTHOR  Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED  DXADJ
C***REVISION HISTORY  (YYMMDD)
C   820728  DATE WRITTEN
C   890126  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXPMUP
      DOUBLE PRECISION DMU,NU,NU1,NU2,PQA,PROD
      DIMENSION PQA(*),IPQA(*)
C***FIRST EXECUTABLE STATEMENT  DXPMUP
      IERROR=0
      NU=NU1
      MU=MU1
      DMU=MU
      N=INT(NU2-NU1+.1D0)+(MU2-MU1)+1
      J=1
*      IF(MOD(REAL(NU),1.).NE.0.) GO TO 210
      IF(MOD(NU,1.d0).NE.0.d0) GO TO 210
  200 IF(DMU.LT.NU+1.D0) GO TO 210
      PQA(J)=0.D0
      IPQA(J)=0
      J=J+1
      IF(J.GT.N) RETURN
C        INCREMENT EITHER MU OR NU AS APPROPRIATE.
      IF(NU2-NU1.GT..5D0) NU=NU+1.D0
      IF(MU2.GT.MU1) MU=MU+1
      GO TO 200
C
C        TRANSFORM P(-MU,NU,X) TO P(MU,NU,X) USING
C        P(MU,NU,X)=(NU-MU+1)*(NU-MU+2)*...*(NU+MU)*P(-MU,NU,X)*(-1)**MU
C
  210 PROD=1.D0
      IPROD=0
      K=2*MU
      IF(K.EQ.0) GO TO 222
      DO 220 L=1,K
      PROD=PROD*(DMU-NU-L)
  220 CALL DXADJ(PROD,IPROD,IERROR)
      IF (IERROR.NE.0) RETURN
  222 CONTINUE
      DO 240 I=J,N
      IF(MU.EQ.0) GO TO 225
      PQA(I)=PQA(I)*PROD*(-1)**MU
      IPQA(I)=IPQA(I)+IPROD
      CALL DXADJ(PQA(I),IPQA(I),IERROR)
      IF (IERROR.NE.0) RETURN
  225 IF(NU2-NU1.GT..5D0) GO TO 230
      PROD=(DMU-NU)*PROD*(-DMU-NU-1.D0)
      CALL DXADJ(PROD,IPROD,IERROR)
      IF (IERROR.NE.0) RETURN
      MU=MU+1
      DMU=DMU+1.D0
      GO TO 240
  230 PROD=PROD*(-DMU-NU-1.D0)/(DMU-NU-1.D0)
      CALL DXADJ(PROD,IPROD,IERROR)
      IF (IERROR.NE.0) RETURN
      NU=NU+1.D0
  240 CONTINUE
      RETURN
      END
*DECK DXPNRM
      SUBROUTINE DXPNRM (NU1, NU2, MU1, MU2, PQA, IPQA, IERROR)
C***BEGIN PROLOGUE  DXPNRM
C***SUBSIDIARY
C***PURPOSE  To compute the values of Legendre functions for DXLEGF.
C            This subroutine transforms an array of Legendre functions
C            of the first kind of negative order stored in array PQA
C            into normalized Legendre polynomials stored in array PQA.
C            The original array is destroyed.
C***LIBRARY   SLATEC
C***CATEGORY  C3A2, C9
C***TYPE      DOUBLE PRECISION (XPNRM-S, DXPNRM-D)
C***KEYWORDS  LEGENDRE FUNCTIONS
C***AUTHOR  Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED  DXADJ
C***REVISION HISTORY  (YYMMDD)
C   820728  DATE WRITTEN
C   890126  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXPNRM
      DOUBLE PRECISION C1,DMU,NU,NU1,NU2,PQA,PROD
      DIMENSION PQA(*),IPQA(*)
C***FIRST EXECUTABLE STATEMENT  DXPNRM
      IERROR=0
      L=(MU2-MU1)+(NU2-NU1+1.5D0)
      MU=MU1
      DMU=MU1
      NU=NU1
C
C         IF MU .GT.NU, NORM P =0.
C
      J=1
  500 IF(DMU.LE.NU) GO TO 505
      PQA(J)=0.D0
      IPQA(J)=0
      J=J+1
      IF(J.GT.L) RETURN
C
C        INCREMENT EITHER MU OR NU AS APPROPRIATE.
C
      IF(MU2.GT.MU1) DMU=DMU+1.D0
      IF(NU2-NU1.GT..5D0) NU=NU+1.D0
      GO TO 500
C
C         TRANSFORM P(-MU,NU,X) INTO NORMALIZED P(MU,NU,X) USING
C              NORM P(MU,NU,X)=
C                 SQRT((NU+.5)*FACTORIAL(NU+MU)/FACTORIAL(NU-MU))
C                              *P(-MU,NU,X)
C
  505 PROD=1.D0
      IPROD=0
      K=2*MU
      IF(K.LE.0) GO TO 520
      DO 510 I=1,K
      PROD=PROD*SQRT(NU+DMU+1.D0-I)
  510 CALL DXADJ(PROD,IPROD,IERROR)
      IF (IERROR.NE.0) RETURN
  520 DO 540 I=J,L
      C1=PROD*SQRT(NU+.5D0)
      PQA(I)=PQA(I)*C1
      IPQA(I)=IPQA(I)+IPROD
      CALL DXADJ(PQA(I),IPQA(I),IERROR)
      IF (IERROR.NE.0) RETURN
      IF(NU2-NU1.GT..5D0) GO TO 530
      IF(DMU.GE.NU) GO TO 525
      PROD=SQRT(NU+DMU+1.D0)*PROD
      IF(NU.GT.DMU) PROD=PROD*SQRT(NU-DMU)
      CALL DXADJ(PROD,IPROD,IERROR)
      IF (IERROR.NE.0) RETURN
      MU=MU+1
      DMU=DMU+1.D0
      GO TO 540
  525 PROD=0.D0
      IPROD=0
      MU=MU+1
      DMU=DMU+1.D0
      GO TO 540
  530 PROD=SQRT(NU+DMU+1.D0)*PROD
      IF(NU.NE.DMU-1.D0) PROD=PROD/SQRT(NU-DMU+1.D0)
      CALL DXADJ(PROD,IPROD,IERROR)
      IF (IERROR.NE.0) RETURN
      NU=NU+1.D0
  540 CONTINUE
      RETURN
      END
*DECK DXPQNU
      SUBROUTINE DXPQNU (NU1, NU2, MU, X, SX, ID, PQA, IPQA, IERROR)
C***BEGIN PROLOGUE  DXPQNU
C***SUBSIDIARY
C***PURPOSE  To compute the values of Legendre functions for DXLEGF.
C            This subroutine calculates initial values of P or Q using
C            power series, then performs forward nu-wise recurrence to
C            obtain P(-MU,NU,X), Q(0,NU,X), or Q(1,NU,X). The nu-wise
C            recurrence is stable for P for all mu and for Q for mu=0,1.
C***LIBRARY   SLATEC
C***CATEGORY  C3A2, C9
C***TYPE      DOUBLE PRECISION (XPQNU-S, DXPQNU-D)
C***KEYWORDS  LEGENDRE FUNCTIONS
C***AUTHOR  Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED  DXADD, DXADJ, DXPSI
C***COMMON BLOCKS    DXBLK1
C***REVISION HISTORY  (YYMMDD)
C   820728  DATE WRITTEN
C   890126  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXPQNU
      DOUBLE PRECISION A,NU,NU1,NU2,PQ,PQA,DXPSI,R,W,X,X1,X2,SX,XS,
     1 Y,Z
      DOUBLE PRECISION DI,DMU,PQ1,PQ2,FACTMU,FLOK
      DIMENSION PQA(*),IPQA(*)
      COMMON /DXBLK1/ NBITSF
      SAVE /DXBLK1/
C
C        J0, IPSIK, AND IPSIX ARE INITIALIZED IN THIS SUBROUTINE.
C        J0 IS THE NUMBER OF TERMS USED IN SERIES EXPANSION
C        IN SUBROUTINE DXPQNU.
C        IPSIK, IPSIX ARE VALUES OF K AND X RESPECTIVELY
C        USED IN THE CALCULATION OF THE DXPSI FUNCTION.
C
C***FIRST EXECUTABLE STATEMENT  DXPQNU
      IERROR=0
      J0=NBITSF
      IPSIK=1+(NBITSF/10)
      IPSIX=5*IPSIK
      IPQ=0
C        FIND NU IN INTERVAL [-.5,.5) IF ID=2  ( CALCULATION OF Q )
      NU=MOD(NU1,1.D0)
      IF(NU.GE..5D0) NU=NU-1.D0
C        FIND NU IN INTERVAL (-1.5,-.5] IF ID=1,3, OR 4  ( CALC. OF P )
      IF(ID.NE.2.AND.NU.GT.-.5D0) NU=NU-1.D0
C        CALCULATE MU FACTORIAL
      K=MU
      DMU=MU
      IF(MU.LE.0) GO TO 60
      FACTMU=1.D0
      IF=0
      DO 50 I=1,K
      FACTMU=FACTMU*I
   50 CALL DXADJ(FACTMU,IF,IERROR)
      IF (IERROR.NE.0) RETURN
   60 IF(K.EQ.0) FACTMU=1.D0
      IF(K.EQ.0) IF=0
C
C        X=COS(THETA)
C        Y=SIN(THETA/2)**2=(1-X)/2=.5-.5*X
C        R=TAN(THETA/2)=SQRT((1-X)/(1+X)
C
      Y=0.5d0*(1.d0-X)
      R=sqrt((1.d0-X)/(1.d0+X))
C
C        USE ASCENDING SERIES TO CALCULATE TWO VALUES OF P OR Q
C        FOR USE AS STARTING VALUES IN RECURRENCE RELATION.
C
      PQ2=0.0D0
      DO 100 J=1,2
      IPQ1=0
      IF(ID.EQ.2) GO TO 80
C
C        SERIES FOR P ( ID = 1, 3, OR 4 )
C        P(-MU,NU,X)=1./FACTORIAL(MU)*SQRT(((1.-X)/(1.+X))**MU)
C                *SUM(FROM 0 TO J0-1)A(J)*(.5-.5*X)**J
C
      IPQ=0
      PQ=1.D0
      A=1.D0
      IA=0
      DO 65 I=2,J0
      DI=I
      A=A*Y*(DI-2.D0-NU)*(DI-1.D0+NU)/((DI-1.D0+DMU)*(DI-1.D0))
      CALL DXADJ(A,IA,IERROR)
      IF (IERROR.NE.0) RETURN
      IF(A.EQ.0.D0) GO TO 66
      CALL DXADD(PQ,IPQ,A,IA,PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
   65 CONTINUE
   66 CONTINUE
      IF(MU.LE.0) GO TO 90
      X2=R
      X1=PQ
      K=MU
      DO 77 I=1,K
      X1=X1*X2
   77 CALL DXADJ(X1,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      PQ=X1/FACTMU
      IPQ=IPQ-IF
      CALL DXADJ(PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      GO TO 90
C
C        Z=-LN(R)=.5*LN((1+X)/(1-X))
C
   80 Z=-LOG(R)
      W=DXPSI(NU+1.D0,IPSIK,IPSIX)
      XS = SX  ! pour le cas ou XS serait modifie par la suite
*      XS=1.D0/SIN(THETA)
C
C        SERIES SUMMATION FOR Q ( ID = 2 )
C        Q(0,NU,X)=SUM(FROM 0 TO J0-1)((.5*LN((1+X)/(1-X))
C    +DXPSI(J+1,IPSIK,IPSIX)-DXPSI(NU+1,IPSIK,IPSIX)))*A(J)*(.5-.5*X)**J
C
C        Q(1,NU,X)=-SQRT(1./(1.-X**2))+SQRT((1-X)/(1+X))
C             *SUM(FROM 0 T0 J0-1)(-NU*(NU+1)/2*LN((1+X)/(1-X))
C                 +(J-NU)*(J+NU+1)/(2*(J+1))+NU*(NU+1)*
C     (DXPSI(NU+1,IPSIK,IPSIX)-DXPSI(J+1,IPSIK,IPSIX))*A(J)*(.5-.5*X)**J
C
C        NOTE, IN THIS LOOP K=J+1
C
      PQ=0.D0
      IPQ=0
      IA=0
      A=1.D0
      DO 85 K=1,J0
      FLOK=K
      IF(K.EQ.1) GO TO 81
      A=A*Y*(FLOK-2.D0-NU)*(FLOK-1.D0+NU)/((FLOK-1.D0+DMU)*(FLOK-1.D0))
      CALL DXADJ(A,IA,IERROR)
      IF (IERROR.NE.0) RETURN
   81 CONTINUE
      IF(MU.GE.1) GO TO 83
      X1=(DXPSI(FLOK,IPSIK,IPSIX)-W+Z)*A
      IX1=IA
      CALL DXADD(PQ,IPQ,X1,IX1,PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      GO TO 85
   83 X1=(NU*(NU+1.D0)*(Z-W+DXPSI(FLOK,IPSIK,IPSIX))+(NU-FLOK+1.D0)
     1  *(NU+FLOK)/(2.D0*FLOK))*A
      IX1=IA
      CALL DXADD(PQ,IPQ,X1,IX1,PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
   85 CONTINUE
      IF(MU.GE.1) PQ=-R*PQ
      IXS=0
      IF(MU.GE.1) CALL DXADD(PQ,IPQ,-XS,IXS,PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      IF(J.EQ.2) MU=-MU
      IF(J.EQ.2) DMU=-DMU
   90 IF(J.EQ.1) PQ2=PQ
      IF(J.EQ.1) IPQ2=IPQ
      NU=NU+1.D0
  100 CONTINUE
      K=0
      IF(NU-1.5D0.LT.NU1) GO TO 120
      K=K+1
      PQA(K)=PQ2
      IPQA(K)=IPQ2
      IF(NU.GT.NU2+.5D0) RETURN
  120 PQ1=PQ
      IPQ1=IPQ
      IF(NU.LT.NU1+.5D0) GO TO 130
      K=K+1
      PQA(K)=PQ
      IPQA(K)=IPQ
      IF(NU.GT.NU2+.5D0) RETURN
C
C        FORWARD NU-WISE RECURRENCE FOR F(MU,NU,X) FOR FIXED MU
C        USING
C        (NU+MU+1)*F(MU,NU,X)=(2.*NU+1)*F(MU,NU,X)-(NU-MU)*F(MU,NU-1,X)
C        WHERE F(MU,NU,X) MAY BE P(-MU,NU,X) OR IF MU IS REPLACED
C        BY -MU THEN F(MU,NU,X) MAY BE Q(MU,NU,X).
C        NOTE, IN THIS LOOP, NU=NU+1
C
  130 X1=(2.D0*NU-1.D0)/(NU+DMU)*X*PQ1
      X2=(NU-1.D0-DMU)/(NU+DMU)*PQ2
      CALL DXADD(X1,IPQ1,-X2,IPQ2,PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      CALL DXADJ(PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      NU=NU+1.D0
      PQ2=PQ1
      IPQ2=IPQ1
      GO TO 120
C
      END
*DECK DXPSI
      DOUBLE PRECISION FUNCTION DXPSI (A, IPSIK, IPSIX)
C***BEGIN PROLOGUE  DXPSI
C***SUBSIDIARY
C***PURPOSE  To compute values of the Psi function for DXLEGF.
C***LIBRARY   SLATEC
C***CATEGORY  C7C
C***TYPE      DOUBLE PRECISION (XPSI-S, DXPSI-D)
C***KEYWORDS  PSI FUNCTION
C***AUTHOR  Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED  (NONE)
C***REVISION HISTORY  (YYMMDD)
C   820728  DATE WRITTEN
C   890126  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXPSI
      DOUBLE PRECISION A,B,C,CNUM,CDENOM
      DIMENSION CNUM(12),CDENOM(12)
      SAVE CNUM, CDENOM
C
C        CNUM(I) AND CDENOM(I) ARE THE ( REDUCED ) NUMERATOR
C        AND 2*I*DENOMINATOR RESPECTIVELY OF THE 2*I TH BERNOULLI
C        NUMBER.
C
      DATA CNUM(1),CNUM(2),CNUM(3),CNUM(4),CNUM(5),CNUM(6),CNUM(7),
     1CNUM(8),CNUM(9),CNUM(10),CNUM(11),CNUM(12)
     2    / 1.D0,     -1.D0,    1.D0,     -1.D0, 1.D0,
     3   -691.D0,  1.D0,     -3617.D0, 43867.D0, -174611.D0, 77683.D0,
     4   -236364091.D0/
      DATA CDENOM(1),CDENOM(2),CDENOM(3),CDENOM(4),CDENOM(5),CDENOM(6),
     1 CDENOM(7),CDENOM(8),CDENOM(9),CDENOM(10),CDENOM(11),CDENOM(12)
     2/12.D0,120.D0,   252.D0,   240.D0,132.D0,
     3  32760.D0, 12.D0,  8160.D0, 14364.D0, 6600.D0, 276.D0, 65520.D0/
C***FIRST EXECUTABLE STATEMENT  DXPSI
      N=MAX(0,IPSIX-INT(A))
      B=N+A
      K1=IPSIK-1
C
C        SERIES EXPANSION FOR A .GT. IPSIX USING IPSIK-1 TERMS.
C
      C=0.D0
      DO 12 I=1,K1
      K=IPSIK-I
   12 C=(C+CNUM(K)/CDENOM(K))/B**2
      DXPSI=LOG(B)-(C+.5D0/B)
      IF(N.EQ.0) GO TO 20
      B=0.D0
C
C        RECURRENCE FOR A .LE. IPSIX.
C
      DO 15 M=1,N
   15 B=B+1.D0/(N-M+A)
      DXPSI=DXPSI-B
   20 RETURN
      END
*DECK DXQMU
      SUBROUTINE DXQMU (NU1, NU2, MU1, MU2, X, SX, ID, PQA, IPQA,
     1   IERROR)
C***BEGIN PROLOGUE  DXQMU
C***SUBSIDIARY
C***PURPOSE  To compute the values of Legendre functions for DXLEGF.
C            Method: forward mu-wise recurrence for Q(MU,NU,X) for fixed
C            nu to obtain Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X).
C***LIBRARY   SLATEC
C***CATEGORY  C3A2, C9
C***TYPE      DOUBLE PRECISION (XQMU-S, DXQMU-D)
C***KEYWORDS  LEGENDRE FUNCTIONS
C***AUTHOR  Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED  DXADD, DXADJ, DXPQNU
C***REVISION HISTORY  (YYMMDD)
C   820728  DATE WRITTEN
C   890126  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXQMU
      DIMENSION PQA(*),IPQA(*)
      DOUBLE PRECISION DMU,NU,NU1,NU2,PQ,PQA,PQ1,PQ2,SX,X,X1,X2
C***FIRST EXECUTABLE STATEMENT  DXQMU
      IERROR=0
      MU=0
C
C        CALL DXPQNU TO OBTAIN Q(0.,NU1,X)
C
      CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      PQ2=PQA(1)
      IPQ2=IPQA(1)
      MU=1
C
C        CALL DXPQNU TO OBTAIN Q(1.,NU1,X)
C
      CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      NU=NU1
      K=0
      MU=1
      DMU=1.D0
      PQ1=PQA(1)
      IPQ1=IPQA(1)
      IF(MU1.GT.0) GO TO 310
      K=K+1
      PQA(K)=PQ2
      IPQA(K)=IPQ2
      IF(MU2.LT.1) GO TO 330
  310 IF(MU1.GT.1) GO TO 320
      K=K+1
      PQA(K)=PQ1
      IPQA(K)=IPQ1
      IF(MU2.LE.1) GO TO 330
  320 CONTINUE
C
C        FORWARD RECURRENCE IN MU TO OBTAIN
C                  Q(MU1,NU,X),Q(MU1+1,NU,X),....,Q(MU2,NU,X) USING
C             Q(MU+1,NU,X)=-2.*MU*X*SQRT(1./(1.-X**2))*Q(MU,NU,X)
C                               -(NU+MU)*(NU-MU+1.)*Q(MU-1,NU,X)
C
      X1=-2.D0*DMU*X*SX*PQ1
      X2=(NU+DMU)*(NU-DMU+1.D0)*PQ2
      CALL DXADD(X1,IPQ1,-X2,IPQ2,PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      CALL DXADJ(PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      PQ2=PQ1
      IPQ2=IPQ1
      PQ1=PQ
      IPQ1=IPQ
      MU=MU+1
      DMU=DMU+1.D0
      IF(MU.LT.MU1) GO TO 320
      K=K+1
      PQA(K)=PQ
      IPQA(K)=IPQ
      IF(MU2.GT.MU) GO TO 320
  330 RETURN
      END
*DECK DXQNU
      SUBROUTINE DXQNU (NU1, NU2, MU1, X, SX, ID, PQA, IPQA,
     1   IERROR)
C***BEGIN PROLOGUE  DXQNU
C***SUBSIDIARY
C***PURPOSE  To compute the values of Legendre functions for DXLEGF.
C            Method: backward nu-wise recurrence for Q(MU,NU,X) for
C            fixed mu to obtain Q(MU1,NU1,X), Q(MU1,NU1+1,X), ...,
C            Q(MU1,NU2,X).
C***LIBRARY   SLATEC
C***CATEGORY  C3A2, C9
C***TYPE      DOUBLE PRECISION (XQNU-S, DXQNU-D)
C***KEYWORDS  LEGENDRE FUNCTIONS
C***AUTHOR  Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED  DXADD, DXADJ, DXPQNU
C***REVISION HISTORY  (YYMMDD)
C   820728  DATE WRITTEN
C   890126  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXQNU
      DIMENSION PQA(*),IPQA(*)
      DOUBLE PRECISION DMU,NU,NU1,NU2,PQ,PQA,PQ1,PQ2,SX,X,X1,X2
      DOUBLE PRECISION PQL1,PQL2
C***FIRST EXECUTABLE STATEMENT  DXQNU
      IERROR=0
      K=0
      PQ2=0.0D0
      IPQ2=0
      PQL2=0.0D0
      IPQL2=0
      IF(MU1.EQ.1) GO TO 290
      MU=0
C
C        CALL DXPQNU TO OBTAIN Q(0.,NU2,X) AND Q(0.,NU2-1,X)
C
      CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      IF(MU1.EQ.0) RETURN
      K=(NU2-NU1+1.5D0)
      PQ2=PQA(K)
      IPQ2=IPQA(K)
      PQL2=PQA(K-1)
      IPQL2=IPQA(K-1)
  290 MU=1
C
C        CALL DXPQNU TO OBTAIN Q(1.,NU2,X) AND Q(1.,NU2-1,X)
C
      CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
      IF (IERROR.NE.0) RETURN
      IF(MU1.EQ.1) RETURN
      NU=NU2
      PQ1=PQA(K)
      IPQ1=IPQA(K)
      PQL1=PQA(K-1)
      IPQL1=IPQA(K-1)
  300 MU=1
      DMU=1.D0
  320 CONTINUE
C
C        FORWARD RECURRENCE IN MU TO OBTAIN Q(MU1,NU2,X) AND
C              Q(MU1,NU2-1,X) USING
C              Q(MU+1,NU,X)=-2.*MU*X*SQRT(1./(1.-X**2))*Q(MU,NU,X)
C                   -(NU+MU)*(NU-MU+1.)*Q(MU-1,NU,X)
C
C              FIRST FOR NU=NU2
C
      X1=-2.D0*DMU*X*SX*PQ1
      X2=(NU+DMU)*(NU-DMU+1.D0)*PQ2
      CALL DXADD(X1,IPQ1,-X2,IPQ2,PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      CALL DXADJ(PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      PQ2=PQ1
      IPQ2=IPQ1
      PQ1=PQ
      IPQ1=IPQ
      MU=MU+1
      DMU=DMU+1.D0
      IF(MU.LT.MU1) GO TO 320
      PQA(K)=PQ
      IPQA(K)=IPQ
      IF(K.EQ.1) RETURN
      IF(NU.LT.NU2) GO TO 340
C
C              THEN FOR NU=NU2-1
C
      NU=NU-1.D0
      PQ2=PQL2
      IPQ2=IPQL2
      PQ1=PQL1
      IPQ1=IPQL1
      K=K-1
      GO TO 300
C
C         BACKWARD RECURRENCE IN NU TO OBTAIN
C              Q(MU1,NU1,X),Q(MU1,NU1+1,X),....,Q(MU1,NU2,X)
C              USING
C              (NU-MU+1.)*Q(MU,NU+1,X)=
C                       (2.*NU+1.)*X*Q(MU,NU,X)-(NU+MU)*Q(MU,NU-1,X)
C
  340 PQ1=PQA(K)
      IPQ1=IPQA(K)
      PQ2=PQA(K+1)
      IPQ2=IPQA(K+1)
  350 IF(NU.LE.NU1) RETURN
      K=K-1
      X1=(2.D0*NU+1.D0)*X*PQ1/(NU+DMU)
      X2=-(NU-DMU+1.D0)*PQ2/(NU+DMU)
      CALL DXADD(X1,IPQ1,X2,IPQ2,PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      CALL DXADJ(PQ,IPQ,IERROR)
      IF (IERROR.NE.0) RETURN
      PQ2=PQ1
      IPQ2=IPQ1
      PQ1=PQ
      IPQ1=IPQ
      PQA(K)=PQ
      IPQA(K)=IPQ
      NU=NU-1.D0
      GO TO 350
      END
*DECK DXRED
      SUBROUTINE DXRED (X, IX, IERROR)
C***BEGIN PROLOGUE  DXRED
C***PURPOSE  To provide double-precision floating-point arithmetic
C            with an extended exponent range.
C***LIBRARY   SLATEC
C***CATEGORY  A3D
C***TYPE      DOUBLE PRECISION (XRED-S, DXRED-D)
C***KEYWORDS  EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR  Lozier, Daniel W., (National Bureau of Standards)
C           Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C     DOUBLE PRECISION X
C     INTEGER IX
C
C                  IF
C                  RADIX**(-2L) .LE. (ABS(X),IX) .LE. RADIX**(2L)
C                  THEN DXRED TRANSFORMS (X,IX) SO THAT IX=0.
C                  IF (X,IX) IS OUTSIDE THE ABOVE RANGE,
C                  THEN DXRED TAKES NO ACTION.
C                  THIS SUBROUTINE IS USEFUL IF THE
C                  RESULTS OF EXTENDED-RANGE CALCULATIONS
C                  ARE TO BE USED IN SUBSEQUENT ORDINARY
C                  DOUBLE-PRECISION CALCULATIONS.
C
C***SEE ALSO  DXSET
C***REFERENCES  (NONE)
C***ROUTINES CALLED  (NONE)
C***COMMON BLOCKS    DXBLK2
C***REVISION HISTORY  (YYMMDD)
C   820712  DATE WRITTEN
C   881020  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXRED
      DOUBLE PRECISION X
      INTEGER IX
      DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R, XA
      INTEGER L, L2, KMAX
      COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
      SAVE /DXBLK2/
C
C***FIRST EXECUTABLE STATEMENT  DXRED
      IERROR=0
      IF (X.EQ.0.0D0) GO TO 90
      XA = ABS(X)
      IF (IX.EQ.0) GO TO 70
      IXA = ABS(IX)
      IXA1 = IXA/L2
      IXA2 = MOD(IXA,L2)
      IF (IX.GT.0) GO TO 40
   10 CONTINUE
      IF (XA.GT.1.0D0) GO TO 20
      XA = XA*RAD2L
      IXA1 = IXA1 + 1
      GO TO 10
   20 XA = XA/RADIX**IXA2
      IF (IXA1.EQ.0) GO TO 70
      DO 30 I=1,IXA1
        IF (XA.LT.1.0D0) GO TO 100
        XA = XA/RAD2L
   30 CONTINUE
      GO TO 70
C
   40 CONTINUE
      IF (XA.LT.1.0D0) GO TO 50
      XA = XA/RAD2L
      IXA1 = IXA1 + 1
      GO TO 40
   50 XA = XA*RADIX**IXA2
      IF (IXA1.EQ.0) GO TO 70
      DO 60 I=1,IXA1
        IF (XA.GT.1.0D0) GO TO 100
        XA = XA*RAD2L
   60 CONTINUE
   70 IF (XA.GT.RAD2L) GO TO 100
      IF (XA.GT.1.0D0) GO TO 80
      IF (RAD2L*XA.LT.1.0D0) GO TO 100
   80 X = SIGN(XA,X)
   90 IX = 0
  100 RETURN
      END
*DECK DXSET
      SUBROUTINE DXSET (IRAD, NRADPL, DZERO, NBITS, IERROR)
C***BEGIN PROLOGUE  DXSET
C***PURPOSE  To provide double-precision floating-point arithmetic
C            with an extended exponent range.
C***LIBRARY   SLATEC
C***CATEGORY  A3D
C***TYPE      DOUBLE PRECISION (XSET-S, DXSET-D)
C***KEYWORDS  EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR  Lozier, Daniel W., (National Bureau of Standards)
C           Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C
C   SUBROUTINE  DXSET  MUST BE CALLED PRIOR TO CALLING ANY OTHER
C EXTENDED-RANGE SUBROUTINE. IT CALCULATES AND STORES SEVERAL
C MACHINE-DEPENDENT CONSTANTS IN COMMON BLOCKS. THE USER MUST
C SUPPLY FOUR CONSTANTS THAT PERTAIN TO HIS PARTICULAR COMPUTER.
C THE CONSTANTS ARE
C
C          IRAD = THE INTERNAL BASE OF DOUBLE-PRECISION
C                 ARITHMETIC IN THE COMPUTER.
C        NRADPL = THE NUMBER OF RADIX PLACES CARRIED IN
C                 THE DOUBLE-PRECISION REPRESENTATION.
C         DZERO = THE SMALLEST OF 1/DMIN, DMAX, DMAXLN WHERE
C                 DMIN = THE SMALLEST POSITIVE DOUBLE-PRECISION
C                 NUMBER OR AN UPPER BOUND TO THIS NUMBER,
C                 DMAX = THE LARGEST DOUBLE-PRECISION NUMBER
C                 OR A LOWER BOUND TO THIS NUMBER,
C                 DMAXLN = THE LARGEST DOUBLE-PRECISION NUMBER
C                 SUCH THAT LOG10(DMAXLN) CAN BE COMPUTED BY THE
C                 FORTRAN SYSTEM (ON MOST SYSTEMS DMAXLN = DMAX).
C         NBITS = THE NUMBER OF BITS (EXCLUSIVE OF SIGN) IN
C                 AN INTEGER COMPUTER WORD.
C
C ALTERNATIVELY, ANY OR ALL OF THE CONSTANTS CAN BE GIVEN
C THE VALUE 0 (0.0D0 FOR DZERO). IF A CONSTANT IS ZERO, DXSET TRIES
C TO ASSIGN AN APPROPRIATE VALUE BY CALLING I1MACH
C (SEE P.A.FOX, A.D.HALL, N.L.SCHRYER, ALGORITHM 528 FRAMEWORK
C FOR A PORTABLE LIBRARY, ACM TRANSACTIONS ON MATH SOFTWARE,
C V.4, NO.2, JUNE 1978, 177-188).
C
C   THIS IS THE SETTING-UP SUBROUTINE FOR A PACKAGE OF SUBROUTINES
C THAT FACILITATE THE USE OF EXTENDED-RANGE ARITHMETIC. EXTENDED-RANGE
C ARITHMETIC ON A PARTICULAR COMPUTER IS DEFINED ON THE SET OF NUMBERS
C OF THE FORM
C
C               (X,IX) = X*RADIX**IX
C
C WHERE X IS A DOUBLE-PRECISION NUMBER CALLED THE PRINCIPAL PART,
C IX IS AN INTEGER CALLED THE AUXILIARY INDEX, AND RADIX IS THE
C INTERNAL BASE OF THE DOUBLE-PRECISION ARITHMETIC.  OBVIOUSLY,
C EACH REAL NUMBER IS REPRESENTABLE WITHOUT ERROR BY MORE THAN ONE
C EXTENDED-RANGE FORM.  CONVERSIONS BETWEEN  DIFFERENT FORMS ARE
C ESSENTIAL IN CARRYING OUT ARITHMETIC OPERATIONS.  WITH THE CHOICE
C OF RADIX WE HAVE MADE, AND THE SUBROUTINES WE HAVE WRITTEN, THESE
C CONVERSIONS ARE PERFORMED WITHOUT ERROR (AT LEAST ON MOST COMPUTERS).
C (SEE SMITH, J.M., OLVER, F.W.J., AND LOZIER, D.W., EXTENDED-RANGE
C ARITHMETIC AND NORMALIZED LEGENDRE POLYNOMIALS, ACM TRANSACTIONS ON
C MATHEMATICAL SOFTWARE, MARCH 1981).
C
C   AN EXTENDED-RANGE NUMBER  (X,IX)  IS SAID TO BE IN ADJUSTED FORM IF
C X AND IX ARE ZERO OR
C
C           RADIX**(-L) .LE. ABS(X) .LT. RADIX**L
C
C IS SATISFIED, WHERE L IS A COMPUTER-DEPENDENT INTEGER DEFINED IN THIS
C SUBROUTINE. TWO EXTENDED-RANGE NUMBERS IN ADJUSTED FORM CAN BE ADDED,
C SUBTRACTED, MULTIPLIED OR DIVIDED (IF THE DIVISOR IS NONZERO) WITHOUT
C CAUSING OVERFLOW OR UNDERFLOW IN THE PRINCIPAL PART OF THE RESULT.
C WITH PROPER USE OF THE EXTENDED-RANGE SUBROUTINES, THE ONLY OVERFLOW
C THAT CAN OCCUR IS INTEGER OVERFLOW IN THE AUXILIARY INDEX. IF THIS
C IS DETECTED, THE SOFTWARE CALLS XERROR (A GENERAL ERROR-HANDLING
C FORTRAN SUBROUTINE PACKAGE).
C
C   MULTIPLICATION AND DIVISION IS PERFORMED BY SETTING
C
C                 (X,IX)*(Y,IY) = (X*Y,IX+IY)
C OR
C                 (X,IX)/(Y,IY) = (X/Y,IX-IY).
C
C PRE-ADJUSTMENT OF THE OPERANDS IS ESSENTIAL TO AVOID
C OVERFLOW OR  UNDERFLOW OF THE PRINCIPAL PART. SUBROUTINE
C DXADJ (SEE BELOW) MAY BE CALLED TO TRANSFORM ANY EXTENDED-
C RANGE NUMBER INTO ADJUSTED FORM.
C
C   ADDITION AND SUBTRACTION REQUIRE THE USE OF SUBROUTINE DXADD
C (SEE BELOW).  THE INPUT OPERANDS NEED NOT BE IN ADJUSTED FORM.
C HOWEVER, THE RESULT OF ADDITION OR SUBTRACTION IS RETURNED
C IN ADJUSTED FORM.  THUS, FOR EXAMPLE, IF (X,IX),(Y,IY),
C (U,IU),  AND (V,IV) ARE IN ADJUSTED FORM, THEN
C
C                 (X,IX)*(Y,IY) + (U,IU)*(V,IV)
C
C CAN BE COMPUTED AND STORED IN ADJUSTED FORM WITH NO EXPLICIT
C CALLS TO DXADJ.
C
C   WHEN AN EXTENDED-RANGE NUMBER IS TO BE PRINTED, IT MUST BE
C CONVERTED TO AN EXTENDED-RANGE FORM WITH DECIMAL RADIX.  SUBROUTINE
C DXCON IS PROVIDED FOR THIS PURPOSE.
C
C   THE SUBROUTINES CONTAINED IN THIS PACKAGE ARE
C
C     SUBROUTINE DXADD
C USAGE
C                  CALL DXADD(X,IX,Y,IY,Z,IZ,IERROR)
C                  IF (IERROR.NE.0) RETURN
C DESCRIPTION
C                  FORMS THE EXTENDED-RANGE SUM  (Z,IZ) =
C                  (X,IX) + (Y,IY).  (Z,IZ) IS ADJUSTED
C                  BEFORE RETURNING. THE INPUT OPERANDS
C                  NEED NOT BE IN ADJUSTED FORM, BUT THEIR
C                  PRINCIPAL PARTS MUST SATISFY
C                  RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
C                  RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).
C
C     SUBROUTINE DXADJ
C USAGE
C                  CALL DXADJ(X,IX,IERROR)
C                  IF (IERROR.NE.0) RETURN
C DESCRIPTION
C                  TRANSFORMS (X,IX) SO THAT
C                  RADIX**(-L) .LE. ABS(X) .LT. RADIX**L.
C                  ON MOST COMPUTERS THIS TRANSFORMATION DOES
C                  NOT CHANGE THE MANTISSA OF X PROVIDED RADIX IS
C                  THE NUMBER BASE OF DOUBLE-PRECISION ARITHMETIC.
C
C     SUBROUTINE DXC210
C USAGE
C                  CALL DXC210(K,Z,J,IERROR)
C                  IF (IERROR.NE.0) RETURN
C DESCRIPTION
C                  GIVEN K THIS SUBROUTINE COMPUTES J AND Z
C                  SUCH THAT  RADIX**K = Z*10**J, WHERE Z IS IN
C                  THE RANGE 1/10 .LE. Z .LT. 1.
C                  THE VALUE OF Z WILL BE ACCURATE TO FULL
C                  DOUBLE-PRECISION PROVIDED THE NUMBER
C                  OF DECIMAL PLACES IN THE LARGEST
C                  INTEGER PLUS THE NUMBER OF DECIMAL
C                  PLACES CARRIED IN DOUBLE-PRECISION DOES NOT
C                  EXCEED 60. DXC210 IS CALLED BY SUBROUTINE
C                  DXCON WHEN NECESSARY. THE USER SHOULD
C                  NEVER NEED TO CALL DXC210 DIRECTLY.
C
C     SUBROUTINE DXCON
C USAGE
C                  CALL DXCON(X,IX,IERROR)
C                  IF (IERROR.NE.0) RETURN
C DESCRIPTION
C                  CONVERTS (X,IX) = X*RADIX**IX
C                  TO DECIMAL FORM IN PREPARATION FOR
C                  PRINTING, SO THAT (X,IX) = X*10**IX
C                  WHERE 1/10 .LE. ABS(X) .LT. 1
C                  IS RETURNED, EXCEPT THAT IF
C                  (ABS(X),IX) IS BETWEEN RADIX**(-2L)
C                  AND RADIX**(2L) THEN THE REDUCED
C                  FORM WITH IX = 0 IS RETURNED.
C
C     SUBROUTINE DXRED
C USAGE
C                  CALL DXRED(X,IX,IERROR)
C                  IF (IERROR.NE.0) RETURN
C DESCRIPTION
C                  IF
C                  RADIX**(-2L) .LE. (ABS(X),IX) .LE. RADIX**(2L)
C                  THEN DXRED TRANSFORMS (X,IX) SO THAT IX=0.
C                  IF (X,IX) IS OUTSIDE THE ABOVE RANGE,
C                  THEN DXRED TAKES NO ACTION.
C                  THIS SUBROUTINE IS USEFUL IF THE
C                  RESULTS OF EXTENDED-RANGE CALCULATIONS
C                  ARE TO BE USED IN SUBSEQUENT ORDINARY
C                  DOUBLE-PRECISION CALCULATIONS.
C
C***REFERENCES  Smith, Olver and Lozier, Extended-Range Arithmetic and
C                 Normalized Legendre Polynomials, ACM Trans on Math
C                 Softw, v 7, n 1, March 1981, pp 93--105.
C***ROUTINES CALLED  I1MACH, XERMSG
C***COMMON BLOCKS    DXBLK1, DXBLK2, DXBLK3
C***REVISION HISTORY  (YYMMDD)
C   820712  DATE WRITTEN
C   881020  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C           CALLs to XERROR changed to CALLs to XERMSG.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXSET
      INTEGER IRAD, NRADPL, NBITS
      DOUBLE PRECISION DZERO, DZEROX
      COMMON /DXBLK1/ NBITSF
      SAVE /DXBLK1/
      DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R
      INTEGER L, L2, KMAX
      COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
      SAVE /DXBLK2/
      INTEGER NLG102, MLG102, LG102
      COMMON /DXBLK3/ NLG102, MLG102, LG102(21)
      SAVE /DXBLK3/
      INTEGER IFLAG
      SAVE IFLAG

*     dlamch is used in place of i1mach :
      double precision dlamch
      external         dlamch
C
      DIMENSION LOG102(20), LGTEMP(20)
      SAVE LOG102
C
C   LOG102 CONTAINS THE FIRST 60 DIGITS OF LOG10(2) FOR USE IN
C CONVERSION OF EXTENDED-RANGE NUMBERS TO BASE 10 .
      DATA LOG102 /301,029,995,663,981,195,213,738,894,724,493,026,768,
     * 189,881,462,108,541,310,428/
C
C FOLLOWING CODING PREVENTS DXSET FROM BEING EXECUTED MORE THAN ONCE.
C THIS IS IMPORTANT BECAUSE SOME SUBROUTINES (SUCH AS DXNRMP AND
C DXLEGF) CALL DXSET TO MAKE SURE EXTENDED-RANGE ARITHMETIC HAS
C BEEN INITIALIZED. THE USER MAY WANT TO PRE-EMPT THIS CALL, FOR
C EXAMPLE WHEN I1MACH IS NOT AVAILABLE. SEE CODING BELOW.
      DATA IFLAG /0/
C***FIRST EXECUTABLE STATEMENT  DXSET
      IERROR=0
      IF (IFLAG .NE. 0) RETURN
      IRADX = IRAD
      NRDPLC = NRADPL
      DZEROX = DZERO
      IMINEX = 0
      IMAXEX = 0
      NBITSX = NBITS
C FOLLOWING 5 STATEMENTS SHOULD BE DELETED IF I1MACH IS
C NOT AVAILABLE OR NOT CONFIGURED TO RETURN THE CORRECT
C MACHINE-DEPENDENT VALUES.
*
* modif : use a call to dlamch in place of I1MACH
      IF (IRADX .EQ. 0) IRADX = int(dlamch('b'))       ! I1MACH (10)
      IF (NRDPLC .EQ. 0) NRDPLC = int(dlamch('t'))     ! I1MACH (14)
      IF (DZEROX .EQ. 0.0D0) IMINEX = int(dlamch('m')) ! I1MACH (15)
      IF (DZEROX .EQ. 0.0D0) IMAXEX = int(dlamch('l')) ! I1MACH (16)
      IF (NBITSX .EQ. 0) NBITSX = 31                   ! I1MACH (8)
      IF (IRADX.EQ.2) GO TO 10
      IF (IRADX.EQ.4) GO TO 10
      IF (IRADX.EQ.8) GO TO 10
      IF (IRADX.EQ.16) GO TO 10
*      CALL XERMSG ('SLATEC', 'DXSET', 'IMPROPER VALUE OF IRAD', 201, 1)
      IERROR=201
      RETURN
   10 CONTINUE
      LOG2R=0
      IF (IRADX.EQ.2) LOG2R = 1
      IF (IRADX.EQ.4) LOG2R = 2
      IF (IRADX.EQ.8) LOG2R = 3
      IF (IRADX.EQ.16) LOG2R = 4
      NBITSF=LOG2R*NRDPLC
      RADIX = IRADX
      DLG10R = LOG10(RADIX)
      IF (DZEROX .NE. 0.0D0) GO TO 14
      LX = MIN ((1-IMINEX)/2, (IMAXEX-1)/2)
      GO TO 16
   14 LX = 0.5D0*LOG10(DZEROX)/DLG10R
C RADIX**(2*L) SHOULD NOT OVERFLOW, BUT REDUCE L BY 1 FOR FURTHER
C PROTECTION.
      LX=LX-1
   16 L2 = 2*LX
      IF (LX.GE.4) GO TO 20
*      CALL XERMSG ('SLATEC', 'DXSET', 'IMPROPER VALUE OF DZERO', 202, 1)
      IERROR=202
      RETURN
   20 L = LX
      RADIXL = RADIX**L
      RAD2L = RADIXL**2
C    IT IS NECESSARY TO RESTRICT NBITS (OR NBITSX) TO BE LESS THAN SOME
C UPPER LIMIT BECAUSE OF BINARY-TO-DECIMAL CONVERSION. SUCH CONVERSION
C IS DONE BY DXC210 AND REQUIRES A CONSTANT THAT IS STORED TO SOME FIXED
C PRECISION. THE STORED CONSTANT (LOG102 IN THIS ROUTINE) PROVIDES
C FOR CONVERSIONS ACCURATE TO THE LAST DECIMAL DIGIT WHEN THE INTEGER
C WORD LENGTH DOES NOT EXCEED 63. A LOWER LIMIT OF 15 BITS IS IMPOSED
C BECAUSE THE SOFTWARE IS DESIGNED TO RUN ON COMPUTERS WITH INTEGER WORD
C LENGTH OF AT LEAST 16 BITS.
      IF (15.LE.NBITSX .AND. NBITSX.LE.63) GO TO 30
*      CALL XERMSG ('SLATEC', 'DXSET', 'IMPROPER VALUE OF NBITS', 203, 1)
      IERROR=203
      RETURN
   30 CONTINUE
      KMAX = 2**(NBITSX-1) - L2
      NB = (NBITSX-1)/2
      MLG102 = 2**NB
      IF (1.LE.NRDPLC*LOG2R .AND. NRDPLC*LOG2R.LE.120) GO TO 40
*      CALL XERMSG ('SLATEC', 'DXSET', 'IMPROPER VALUE OF NRADPL', 204,
*     +             1)
      IERROR=204
      RETURN
   40 CONTINUE
      NLG102 = NRDPLC*LOG2R/NB + 3
      NP1 = NLG102 + 1
C
C   AFTER COMPLETION OF THE FOLLOWING LOOP, IC CONTAINS
C THE INTEGER PART AND LGTEMP CONTAINS THE FRACTIONAL PART
C OF LOG10(IRADX) IN RADIX 1000.
      IC = 0
      DO 50 II=1,20
        I = 21 - II
        IT = LOG2R*LOG102(I) + IC
        IC = IT/1000
        LGTEMP(I) = MOD(IT,1000)
   50 CONTINUE
C
C   AFTER COMPLETION OF THE FOLLOWING LOOP, LG102 CONTAINS
C LOG10(IRADX) IN RADIX MLG102. THE RADIX POINT IS
C BETWEEN LG102(1) AND LG102(2).
      LG102(1) = IC
      DO 80 I=2,NP1
        LG102X = 0
        DO 70 J=1,NB
          IC = 0
          DO 60 KK=1,20
            K = 21 - KK
            IT = 2*LGTEMP(K) + IC
            IC = IT/1000
            LGTEMP(K) = MOD(IT,1000)
   60     CONTINUE
          LG102X = 2*LG102X + IC
   70   CONTINUE
        LG102(I) = LG102X
   80 CONTINUE
C
C CHECK SPECIAL CONDITIONS REQUIRED BY SUBROUTINES...
      IF (NRDPLC.LT.L) GO TO 90
*      CALL XERMSG ('SLATEC', 'DXSET', 'NRADPL .GE. L', 205, 1)
      IERROR=205
      RETURN
   90 IF (6*L.LE.KMAX) GO TO 100
*      CALL XERMSG ('SLATEC', 'DXSET', '6*L .GT. KMAX', 206, 1)
      IERROR=206
      RETURN
  100 CONTINUE
      IFLAG = 1
      RETURN
      END

      SUBROUTINE DXADD (X, IX, Y, IY, Z, IZ, IERROR)
C***BEGIN PROLOGUE  DXADD
C***PURPOSE  To provide double-precision floating-point arithmetic
C            with an extended exponent range.
C***LIBRARY   SLATEC
C***CATEGORY  A3D
C***TYPE      DOUBLE PRECISION (XADD-S, DXADD-D)
C***KEYWORDS  EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR  Lozier, Daniel W., (National Bureau of Standards)
C           Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C     DOUBLE PRECISION X, Y, Z
C     INTEGER IX, IY, IZ
C
C                  FORMS THE EXTENDED-RANGE SUM  (Z,IZ) =
C                  (X,IX) + (Y,IY).  (Z,IZ) IS ADJUSTED
C                  BEFORE RETURNING. THE INPUT OPERANDS
C                  NEED NOT BE IN ADJUSTED FORM, BUT THEIR
C                  PRINCIPAL PARTS MUST SATISFY
C                  RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
C                  RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).
C
C***SEE ALSO  DXSET
C***REFERENCES  (NONE)
C***ROUTINES CALLED  DXADJ
C***COMMON BLOCKS    DXBLK2
C***REVISION HISTORY  (YYMMDD)
C   820712  DATE WRITTEN
C   881020  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXADD
      DOUBLE PRECISION X, Y, Z
      INTEGER IX, IY, IZ
      DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R
      INTEGER L, L2, KMAX
      COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
      SAVE /DXBLK2/
      DOUBLE PRECISION S, T
C
C   THE CONDITIONS IMPOSED ON L AND KMAX BY THIS SUBROUTINE
C ARE
C     (1) 1 .LT. L .LE. 0.5D0*LOGR(0.5D0*DZERO)
C
C     (2) NRADPL .LT. L .LE. KMAX/6
C
C     (3) KMAX .LE. (2**NBITS - 4*L - 1)/2
C
C THESE CONDITIONS MUST BE MET BY APPROPRIATE CODING
C IN SUBROUTINE DXSET.
C
C***FIRST EXECUTABLE STATEMENT  DXADD
      IERROR=0
      IF (X.NE.0.0D0) GO TO 10
      Z = Y
      IZ = IY
      GO TO 220
   10 IF (Y.NE.0.0D0) GO TO 20
      Z = X
      IZ = IX
      GO TO 220
   20 CONTINUE
      IF (IX.GE.0 .AND. IY.GE.0) GO TO 40
      IF (IX.LT.0 .AND. IY.LT.0) GO TO 40
      IF (ABS(IX).LE.6*L .AND. ABS(IY).LE.6*L) GO TO 40
      IF (IX.GE.0) GO TO 30
      Z = Y
      IZ = IY
      GO TO 220
   30 CONTINUE
      Z = X
      IZ = IX
      GO TO 220
   40 I = IX - IY
      IF (I) 80, 50, 90
   50 IF (ABS(X).GT.1.0D0 .AND. ABS(Y).GT.1.0D0) GO TO 60
      IF (ABS(X).LT.1.0D0 .AND. ABS(Y).LT.1.0D0) GO TO 70
      Z = X + Y
      IZ = IX
      GO TO 220
   60 S = X/RADIXL
      T = Y/RADIXL
      Z = S + T
      IZ = IX + L
      GO TO 220
   70 S = X*RADIXL
      T = Y*RADIXL
      Z = S + T
      IZ = IX - L
      GO TO 220
   80 S = Y
      IS = IY
      T = X
      GO TO 100
   90 S = X
      IS = IX
      T = Y
  100 CONTINUE
C
C  AT THIS POINT, THE ONE OF (X,IX) OR (Y,IY) THAT HAS THE
C LARGER AUXILIARY INDEX IS STORED IN (S,IS). THE PRINCIPAL
C PART OF THE OTHER INPUT IS STORED IN T.
C
      I1 = ABS(I)/L
      I2 = MOD(ABS(I),L)
      IF (ABS(T).GE.RADIXL) GO TO 130
      IF (ABS(T).GE.1.0D0) GO TO 120
      IF (RADIXL*ABS(T).GE.1.0D0) GO TO 110
      J = I1 + 1
      T = T*RADIX**(L-I2)
      GO TO 140
  110 J = I1
      T = T*RADIX**(-I2)
      GO TO 140
  120 J = I1 - 1
      IF (J.LT.0) GO TO 110
      T = T*RADIX**(-I2)/RADIXL
      GO TO 140
  130 J = I1 - 2
      IF (J.LT.0) GO TO 120
      T = T*RADIX**(-I2)/RAD2L
  140 CONTINUE
C
C  AT THIS POINT, SOME OR ALL OF THE DIFFERENCE IN THE
C AUXILIARY INDICES HAS BEEN USED TO EFFECT A LEFT SHIFT
C OF T.  THE SHIFTED VALUE OF T SATISFIES
C
C       RADIX**(-2*L) .LE. ABS(T) .LE. 1.0D0
C
C AND, IF J=0, NO FURTHER SHIFTING REMAINS TO BE DONE.
C
      IF (J.EQ.0) GO TO 190
      IF (ABS(S).GE.RADIXL .OR. J.GT.3) GO TO 150
      IF (ABS(S).GE.1.0D0) GO TO (180, 150, 150), J
      IF (RADIXL*ABS(S).GE.1.0D0) GO TO (180, 170, 150), J
      GO TO (180, 170, 160), J
  150 Z = S
      IZ = IS
      GO TO 220
  160 S = S*RADIXL
  170 S = S*RADIXL
  180 S = S*RADIXL
  190 CONTINUE
C
C   AT THIS POINT, THE REMAINING DIFFERENCE IN THE
C AUXILIARY INDICES HAS BEEN USED TO EFFECT A RIGHT SHIFT
C OF S.  IF THE SHIFTED VALUE OF S WOULD HAVE EXCEEDED
C RADIX**L, THEN (S,IS) IS RETURNED AS THE VALUE OF THE
C SUM.
C
      IF (ABS(S).GT.1.0D0 .AND. ABS(T).GT.1.0D0) GO TO 200
      IF (ABS(S).LT.1.0D0 .AND. ABS(T).LT.1.0D0) GO TO 210
      Z = S + T
      IZ = IS - J*L
      GO TO 220
  200 S = S/RADIXL
      T = T/RADIXL
      Z = S + T
      IZ = IS - J*L + L
      GO TO 220
  210 S = S*RADIXL
      T = T*RADIXL
      Z = S + T
      IZ = IS - J*L - L
  220 CALL DXADJ(Z, IZ,IERROR)
      RETURN
      END
*DECK DXADJ
      SUBROUTINE DXADJ (X, IX, IERROR)
C***BEGIN PROLOGUE  DXADJ
C***PURPOSE  To provide double-precision floating-point arithmetic
C            with an extended exponent range.
C***LIBRARY   SLATEC
C***CATEGORY  A3D
C***TYPE      DOUBLE PRECISION (XADJ-S, DXADJ-D)
C***KEYWORDS  EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR  Lozier, Daniel W., (National Bureau of Standards)
C           Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C     DOUBLE PRECISION X
C     INTEGER IX
C
C                  TRANSFORMS (X,IX) SO THAT
C                  RADIX**(-L) .LE. ABS(X) .LT. RADIX**L.
C                  ON MOST COMPUTERS THIS TRANSFORMATION DOES
C                  NOT CHANGE THE MANTISSA OF X PROVIDED RADIX IS
C                  THE NUMBER BASE OF DOUBLE-PRECISION ARITHMETIC.
C
C***SEE ALSO  DXSET
C***REFERENCES  (NONE)
C***ROUTINES CALLED  XERMSG
C***COMMON BLOCKS    DXBLK2
C***REVISION HISTORY  (YYMMDD)
C   820712  DATE WRITTEN
C   881020  Revised to meet SLATEC CML recommendations.  (DWL and JMS)
C   901019  Revisions to prologue.  (DWL and WRB)
C   901106  Changed all specific intrinsics to generic.  (WRB)
C           Corrected order of sections in prologue and added TYPE
C           section.  (WRB)
C           CALLs to XERROR changed to CALLs to XERMSG.  (WRB)
C   920127  Revised PURPOSE section of prologue.  (DWL)
C***END PROLOGUE  DXADJ
      DOUBLE PRECISION X
      INTEGER IX
      DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R
      INTEGER L, L2, KMAX
      COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
      SAVE /DXBLK2/
C
C   THE CONDITION IMPOSED ON L AND KMAX BY THIS SUBROUTINE
C IS
C     2*L .LE. KMAX
C
C THIS CONDITION MUST BE MET BY APPROPRIATE CODING
C IN SUBROUTINE DXSET.
C
C***FIRST EXECUTABLE STATEMENT  DXADJ
      IERROR=0
      IF (X.EQ.0.0D0) GO TO 50
      IF (ABS(X).GE.1.0D0) GO TO 20
      IF (RADIXL*ABS(X).GE.1.0D0) GO TO 60
      X = X*RAD2L
      IF (IX.LT.0) GO TO 10
      IX = IX - L2
      GO TO 70
   10 IF (IX.LT.-KMAX+L2) GO TO 40
      IX = IX - L2
      GO TO 70
   20 IF (ABS(X).LT.RADIXL) GO TO 60
      X = X/RAD2L
      IF (IX.GT.0) GO TO 30
      IX = IX + L2
      GO TO 70
   30 IF (IX.GT.KMAX-L2) GO TO 40
      IX = IX + L2
      GO TO 70
 40   continue
*   40 CALL XERMSG ('SLATEC', 'DXADJ', 'overflow in auxiliary index',
*     +             207, 1)
      IERROR=207
      RETURN
   50 IX = 0
   60 IF (ABS(IX).GT.KMAX) GO TO 40
   70 RETURN
      END