1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
|
*
* original code from the Slatec library
*
* slight modifications by Bruno Pincon <Bruno.Pincon@iecn.u-nancy.fr> :
*
* 1/ some (minor modifications) so that the "enter" is
* now X and not THETA (X=cos(THETA)). This leads to
* better accuracy for x near 0 and seems more
* natural but may be there is some drawback ?
* 2/ remove parts which send warning messages to the
* Slatec XERMSG routine (nevertheless all the errors
* flags are communicated throw IERROR).
* Normaly the scilab interface verify the validity of the
* input arguments but the verifications in this code are
* still here.
* 3/ substitute calls to I1MACH by calls to dlamch
* (Scilab uses dlamch and not I1MACH to get machine
* parameter so it seems more logical).
*
* IERROR values :
* 210 : DNU1, NUDIFF, MU1, MU2, or ID not valid
* 211 : X out of range (must be in [0,1)
* 201, 202, 203, 204 : invalid input was provided to DXSET
* (should not occured in IEEE floating point)
* 205, 206 : internal consistency error occurred in DXSET
* (probably due to a software malfunction in the
* library routine I1MACH) Should not occured
* in IEEE floating point, if dlamch works well.
* 207 : an overflow or underflow of an extended-range number
* was detected in DXADJ.
* 208 : an error which may occur in DXC210 but this one is not
* call from DXLEGF (don't know why it is given below).
*
* Normally on the return to scilab, only 207 may be present.
*DECK DXLEGF
SUBROUTINE DXLEGF(DNU1, NUDIFF, MU1, MU2, X, ID, PQA, IPQA,
1 IERROR)
C***BEGIN PROLOGUE DXLEGF
C***PURPOSE Compute normalized Legendre polynomials and associated
C Legendre functions.
C***LIBRARY SLATEC
C***CATEGORY C3A2, C9
C***TYPE DOUBLE PRECISION (XLEGF-S, DXLEGF-D)
C***KEYWORDS LEGENDRE FUNCTIONS
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C
C DXLEGF: Extended-range Double-precision Legendre Functions
C
C A feature of the DXLEGF subroutine for Legendre functions is
C the use of extended-range arithmetic, a software extension of
C ordinary floating-point arithmetic that greatly increases the
C exponent range of the representable numbers. This avoids the
C need for scaling the solutions to lie within the exponent range
C of the most restrictive manufacturer's hardware. The increased
C exponent range is achieved by allocating an integer storage
C location together with each floating-point storage location.
C
C The interpretation of the pair (X,I) where X is floating-point
C and I is integer is X*(IR**I) where IR is the internal radix of
C the computer arithmetic.
C
C This subroutine computes one of the following vectors:
C
C 1. Legendre function of the first kind of negative order, either
C a. P(-MU1,NU,X), P(-MU1-1,NU,X), ..., P(-MU2,NU,X) or
C b. P(-MU,NU1,X), P(-MU,NU1+1,X), ..., P(-MU,NU2,X)
C 2. Legendre function of the second kind, either
C a. Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X) or
C b. Q(MU,NU1,X), Q(MU,NU1+1,X), ..., Q(MU,NU2,X)
C 3. Legendre function of the first kind of positive order, either
C a. P(MU1,NU,X), P(MU1+1,NU,X), ..., P(MU2,NU,X) or
C b. P(MU,NU1,X), P(MU,NU1+1,X), ..., P(MU,NU2,X)
C 4. Normalized Legendre polynomials, either
C a. PN(MU1,NU,X), PN(MU1+1,NU,X), ..., PN(MU2,NU,X) or
C b. PN(MU,NU1,X), PN(MU,NU1+1,X), ..., PN(MU,NU2,X)
C
C where X = COS(THETA).
C
C The input values to DXLEGF are DNU1, NUDIFF, MU1, MU2, THETA (now X),
C and ID. These must satisfy
C
C DNU1 is DOUBLE PRECISION and greater than or equal to -0.5;
C NUDIFF is INTEGER and non-negative;
C MU1 is INTEGER and non-negative;
C MU2 is INTEGER and greater than or equal to MU1;
C THETA is DOUBLE PRECISION and in the half-open interval (0,PI/2];
* modification : X is given (and not THETA) X must be in [0,1)
C ID is INTEGER and equal to 1, 2, 3 or 4;
C
C and additionally either NUDIFF = 0 or MU2 = MU1.
C
C If ID=1 and NUDIFF=0, a vector of type 1a above is computed
C with NU=DNU1.
C
C If ID=1 and MU1=MU2, a vector of type 1b above is computed
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
C
C If ID=2 and NUDIFF=0, a vector of type 2a above is computed
C with NU=DNU1.
C
C If ID=2 and MU1=MU2, a vector of type 2b above is computed
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
C
C If ID=3 and NUDIFF=0, a vector of type 3a above is computed
C with NU=DNU1.
C
C If ID=3 and MU1=MU2, a vector of type 3b above is computed
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
C
C If ID=4 and NUDIFF=0, a vector of type 4a above is computed
C with NU=DNU1.
C
C If ID=4 and MU1=MU2, a vector of type 4b above is computed
C with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.
C
C In each case the vector of computed Legendre function values
C is returned in the extended-range vector (PQA(I),IPQA(I)). The
C length of this vector is either MU2-MU1+1 or NUDIFF+1.
C
C Where possible, DXLEGF returns IPQA(I) as zero. In this case the
C value of the Legendre function is contained entirely in PQA(I),
C so it can be used in subsequent computations without further
C consideration of extended-range arithmetic. If IPQA(I) is nonzero,
C then the value of the Legendre function is not representable in
C floating-point because of underflow or overflow. The program that
C calls DXLEGF must test IPQA(I) to ensure correct usage.
C
C IERROR is an error indicator. If no errors are detected, IERROR=0
C when control returns to the calling routine. If an error is detected,
C IERROR is returned as nonzero. The calling routine must check the
C value of IERROR.
C
C If IERROR=210 or 211, invalid input was provided to DXLEGF.
C If IERROR=201,202,203, or 204, invalid input was provided to DXSET.
C If IERROR=205 or 206, an internal consistency error occurred in
C DXSET (probably due to a software malfunction in the library routine
C I1MACH).
C If IERROR=207, an overflow or underflow of an extended-range number
C was detected in DXADJ.
C If IERROR=208, an overflow or underflow of an extended-range number
C was detected in DXC210.
C
C***SEE ALSO DXSET
C***REFERENCES Olver and Smith, Associated Legendre Functions on the
C Cut, J Comp Phys, v 51, n 3, Sept 1983, pp 502--518.
C Smith, Olver and Lozier, Extended-Range Arithmetic and
C Normalized Legendre Polynomials, ACM Trans on Math
C Softw, v 7, n 1, March 1981, pp 93--105.
C***ROUTINES CALLED DXPMU, DXPMUP, DXPNRM, DXPQNU, DXQMU, DXQNU, DXRED,
C DXSET, XERMSG
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C CALLs to XERROR changed to CALLs to XERMSG. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXLEGF
DOUBLE PRECISION PQA,DNU1,DNU2,SX,X,PI2
DIMENSION PQA(*),IPQA(*)
C
C***FIRST EXECUTABLE STATEMENT DXLEGF
IERROR=0
CALL DXSET (0, 0, 0.0D0, 0,IERROR)
IF (IERROR.NE.0) RETURN
PI2=2.D0*ATAN(1.D0)
C
C ZERO OUTPUT ARRAYS
C
L=(MU2-MU1)+NUDIFF+1
DO 290 I=1,L
PQA(I)=0.D0
290 IPQA(I)=0
C
C CHECK FOR VALID INPUT VALUES
C
*** normally all these are verified by the scilab interface
IF(NUDIFF.LT.0) GO TO 400
IF(DNU1.LT.-.5D0) GO TO 400
IF(MU2.LT.MU1) GO TO 400
IF(MU1.LT.0) GO TO 400
* IF(THETA.LE.0.D0.OR.THETA.GT.PI2) GO TO 420
IF(X.LT.0.D0.OR.X.GE.1.d0) GO TO 420
IF(ID.LT.1.OR.ID.GT.4) GO TO 400
IF((MU1.NE.MU2).AND.(NUDIFF.GT.0)) GO TO 400
C
C IF DNU1 IS NOT AN INTEGER, NORMALIZED P(MU,DNU,X)
C CANNOT BE CALCULATED. IF DNU1 IS AN INTEGER AND
C MU1.GT.DNU2 THEN ALL VALUES OF P(+MU,DNU,X) AND
C NORMALIZED P(MU,NU,X) WILL BE ZERO.
C
DNU2=DNU1+NUDIFF
IF((ID.EQ.3).AND.(MOD(DNU1,1.D0).NE.0.D0)) GO TO 295
IF((ID.EQ.4).AND.(MOD(DNU1,1.D0).NE.0.D0)) GO TO 400
IF((ID.EQ.3.OR.ID.EQ.4).AND.MU1.GT.DNU2) RETURN
295 CONTINUE
C
* X=COS(THETA)
* SX=1.D0/SIN(THETA)
SX=1.D0/SQRT((1.d0-X)*(1.d0+X))
IF(ID.EQ.2) GO TO 300
IF(MU2-MU1.LE.0) GO TO 360
C
C FIXED NU, VARIABLE MU
C CALL DXPMU TO CALCULATE P(-MU1,NU,X),....,P(-MU2,NU,X)
C
CALL DXPMU(DNU1,DNU2,MU1,MU2,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
GO TO 380
C
300 IF(MU2.EQ.MU1) GO TO 320
C
C FIXED NU, VARIABLE MU
C CALL DXQMU TO CALCULATE Q(MU1,NU,X),....,Q(MU2,NU,X)
C
CALL DXQMU(DNU1,DNU2,MU1,MU2,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
GO TO 390
C
C FIXED MU, VARIABLE NU
C CALL DXQNU TO CALCULATE Q(MU,DNU1,X),....,Q(MU,DNU2,X)
C
320 CALL DXQNU(DNU1,DNU2,MU1,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
GO TO 390
C
C FIXED MU, VARIABLE NU
C CALL DXPQNU TO CALCULATE P(-MU,DNU1,X),....,P(-MU,DNU2,X)
C
360 CALL DXPQNU(DNU1,DNU2,MU1,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
C
C IF ID = 3, TRANSFORM P(-MU,NU,X) VECTOR INTO
C P(MU,NU,X) VECTOR.
C
380 IF(ID.EQ.3) CALL DXPMUP(DNU1,DNU2,MU1,MU2,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
C
C IF ID = 4, TRANSFORM P(-MU,NU,X) VECTOR INTO
C NORMALIZED P(MU,NU,X) VECTOR.
C
IF(ID.EQ.4) CALL DXPNRM(DNU1,DNU2,MU1,MU2,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
C
C PLACE RESULTS IN REDUCED FORM IF POSSIBLE
C AND RETURN TO MAIN PROGRAM.
C
390 DO 395 I=1,L
CALL DXRED(PQA(I),IPQA(I),IERROR)
IF (IERROR.NE.0) RETURN
395 CONTINUE
RETURN
C
C ***** ERROR TERMINATION *****
C
* 400 CALL XERMSG ('SLATEC', 'DXLEGF',
* + 'DNU1, NUDIFF, MU1, MU2, or ID not valid', 210, 1)
400 continue
IERROR=210
RETURN
* 420 CALL XERMSG ('SLATEC', 'DXLEGF', 'THETA out of range', 211, 1)
420 continue
IERROR=211
RETURN
END
*DECK DXPMU
SUBROUTINE DXPMU (NU1, NU2, MU1, MU2, X, SX, ID, PQA, IPQA,
1 IERROR)
C***BEGIN PROLOGUE DXPMU
C***SUBSIDIARY
C***PURPOSE To compute the values of Legendre functions for DXLEGF.
C Method: backward mu-wise recurrence for P(-MU,NU,X) for
C fixed nu to obtain P(-MU2,NU1,X), P(-(MU2-1),NU1,X), ...,
C P(-MU1,NU1,X) and store in ascending mu order.
C***LIBRARY SLATEC
C***CATEGORY C3A2, C9
C***TYPE DOUBLE PRECISION (XPMU-S, DXPMU-D)
C***KEYWORDS LEGENDRE FUNCTIONS
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED DXADD, DXADJ, DXPQNU
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXPMU
DOUBLE PRECISION PQA,NU1,NU2,P0,X,SX,X1,X2
DIMENSION PQA(*),IPQA(*)
C
C CALL DXPQNU TO OBTAIN P(-MU2,NU,X)
C
C***FIRST EXECUTABLE STATEMENT DXPMU
IERROR=0
CALL DXPQNU(NU1,NU2,MU2,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
P0=PQA(1)
IP0=IPQA(1)
MU=MU2-1
C
C CALL DXPQNU TO OBTAIN P(-MU2-1,NU,X)
C
CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
N=MU2-MU1+1
PQA(N)=P0
IPQA(N)=IP0
IF(N.EQ.1) GO TO 300
PQA(N-1)=PQA(1)
IPQA(N-1)=IPQA(1)
IF(N.EQ.2) GO TO 300
J=N-2
290 CONTINUE
C
C BACKWARD RECURRENCE IN MU TO OBTAIN
C P(-MU2,NU1,X),P(-(MU2-1),NU1,X),....P(-MU1,NU1,X)
C USING
C (NU-MU)*(NU+MU+1.)*P(-(MU+1),NU,X)=
C 2.*MU*X*SQRT((1./(1.-X**2))*P(-MU,NU,X)-P(-(MU-1),NU,X)
C
X1=2.D0*MU*X*SX*PQA(J+1)
X2=-(NU1-MU)*(NU1+MU+1.D0)*PQA(J+2)
CALL DXADD(X1,IPQA(J+1),X2,IPQA(J+2),PQA(J),IPQA(J),IERROR)
IF (IERROR.NE.0) RETURN
CALL DXADJ(PQA(J),IPQA(J),IERROR)
IF (IERROR.NE.0) RETURN
IF(J.EQ.1) GO TO 300
J=J-1
MU=MU-1
GO TO 290
300 RETURN
END
*DECK DXPMUP
SUBROUTINE DXPMUP (NU1, NU2, MU1, MU2, PQA, IPQA, IERROR)
C***BEGIN PROLOGUE DXPMUP
C***SUBSIDIARY
C***PURPOSE To compute the values of Legendre functions for DXLEGF.
C This subroutine transforms an array of Legendre functions
C of the first kind of negative order stored in array PQA
C into Legendre functions of the first kind of positive
C order stored in array PQA. The original array is destroyed.
C***LIBRARY SLATEC
C***CATEGORY C3A2, C9
C***TYPE DOUBLE PRECISION (XPMUP-S, DXPMUP-D)
C***KEYWORDS LEGENDRE FUNCTIONS
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED DXADJ
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXPMUP
DOUBLE PRECISION DMU,NU,NU1,NU2,PQA,PROD
DIMENSION PQA(*),IPQA(*)
C***FIRST EXECUTABLE STATEMENT DXPMUP
IERROR=0
NU=NU1
MU=MU1
DMU=MU
N=INT(NU2-NU1+.1D0)+(MU2-MU1)+1
J=1
* IF(MOD(REAL(NU),1.).NE.0.) GO TO 210
IF(MOD(NU,1.d0).NE.0.d0) GO TO 210
200 IF(DMU.LT.NU+1.D0) GO TO 210
PQA(J)=0.D0
IPQA(J)=0
J=J+1
IF(J.GT.N) RETURN
C INCREMENT EITHER MU OR NU AS APPROPRIATE.
IF(NU2-NU1.GT..5D0) NU=NU+1.D0
IF(MU2.GT.MU1) MU=MU+1
GO TO 200
C
C TRANSFORM P(-MU,NU,X) TO P(MU,NU,X) USING
C P(MU,NU,X)=(NU-MU+1)*(NU-MU+2)*...*(NU+MU)*P(-MU,NU,X)*(-1)**MU
C
210 PROD=1.D0
IPROD=0
K=2*MU
IF(K.EQ.0) GO TO 222
DO 220 L=1,K
PROD=PROD*(DMU-NU-L)
220 CALL DXADJ(PROD,IPROD,IERROR)
IF (IERROR.NE.0) RETURN
222 CONTINUE
DO 240 I=J,N
IF(MU.EQ.0) GO TO 225
PQA(I)=PQA(I)*PROD*(-1)**MU
IPQA(I)=IPQA(I)+IPROD
CALL DXADJ(PQA(I),IPQA(I),IERROR)
IF (IERROR.NE.0) RETURN
225 IF(NU2-NU1.GT..5D0) GO TO 230
PROD=(DMU-NU)*PROD*(-DMU-NU-1.D0)
CALL DXADJ(PROD,IPROD,IERROR)
IF (IERROR.NE.0) RETURN
MU=MU+1
DMU=DMU+1.D0
GO TO 240
230 PROD=PROD*(-DMU-NU-1.D0)/(DMU-NU-1.D0)
CALL DXADJ(PROD,IPROD,IERROR)
IF (IERROR.NE.0) RETURN
NU=NU+1.D0
240 CONTINUE
RETURN
END
*DECK DXPNRM
SUBROUTINE DXPNRM (NU1, NU2, MU1, MU2, PQA, IPQA, IERROR)
C***BEGIN PROLOGUE DXPNRM
C***SUBSIDIARY
C***PURPOSE To compute the values of Legendre functions for DXLEGF.
C This subroutine transforms an array of Legendre functions
C of the first kind of negative order stored in array PQA
C into normalized Legendre polynomials stored in array PQA.
C The original array is destroyed.
C***LIBRARY SLATEC
C***CATEGORY C3A2, C9
C***TYPE DOUBLE PRECISION (XPNRM-S, DXPNRM-D)
C***KEYWORDS LEGENDRE FUNCTIONS
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED DXADJ
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXPNRM
DOUBLE PRECISION C1,DMU,NU,NU1,NU2,PQA,PROD
DIMENSION PQA(*),IPQA(*)
C***FIRST EXECUTABLE STATEMENT DXPNRM
IERROR=0
L=(MU2-MU1)+(NU2-NU1+1.5D0)
MU=MU1
DMU=MU1
NU=NU1
C
C IF MU .GT.NU, NORM P =0.
C
J=1
500 IF(DMU.LE.NU) GO TO 505
PQA(J)=0.D0
IPQA(J)=0
J=J+1
IF(J.GT.L) RETURN
C
C INCREMENT EITHER MU OR NU AS APPROPRIATE.
C
IF(MU2.GT.MU1) DMU=DMU+1.D0
IF(NU2-NU1.GT..5D0) NU=NU+1.D0
GO TO 500
C
C TRANSFORM P(-MU,NU,X) INTO NORMALIZED P(MU,NU,X) USING
C NORM P(MU,NU,X)=
C SQRT((NU+.5)*FACTORIAL(NU+MU)/FACTORIAL(NU-MU))
C *P(-MU,NU,X)
C
505 PROD=1.D0
IPROD=0
K=2*MU
IF(K.LE.0) GO TO 520
DO 510 I=1,K
PROD=PROD*SQRT(NU+DMU+1.D0-I)
510 CALL DXADJ(PROD,IPROD,IERROR)
IF (IERROR.NE.0) RETURN
520 DO 540 I=J,L
C1=PROD*SQRT(NU+.5D0)
PQA(I)=PQA(I)*C1
IPQA(I)=IPQA(I)+IPROD
CALL DXADJ(PQA(I),IPQA(I),IERROR)
IF (IERROR.NE.0) RETURN
IF(NU2-NU1.GT..5D0) GO TO 530
IF(DMU.GE.NU) GO TO 525
PROD=SQRT(NU+DMU+1.D0)*PROD
IF(NU.GT.DMU) PROD=PROD*SQRT(NU-DMU)
CALL DXADJ(PROD,IPROD,IERROR)
IF (IERROR.NE.0) RETURN
MU=MU+1
DMU=DMU+1.D0
GO TO 540
525 PROD=0.D0
IPROD=0
MU=MU+1
DMU=DMU+1.D0
GO TO 540
530 PROD=SQRT(NU+DMU+1.D0)*PROD
IF(NU.NE.DMU-1.D0) PROD=PROD/SQRT(NU-DMU+1.D0)
CALL DXADJ(PROD,IPROD,IERROR)
IF (IERROR.NE.0) RETURN
NU=NU+1.D0
540 CONTINUE
RETURN
END
*DECK DXPQNU
SUBROUTINE DXPQNU (NU1, NU2, MU, X, SX, ID, PQA, IPQA, IERROR)
C***BEGIN PROLOGUE DXPQNU
C***SUBSIDIARY
C***PURPOSE To compute the values of Legendre functions for DXLEGF.
C This subroutine calculates initial values of P or Q using
C power series, then performs forward nu-wise recurrence to
C obtain P(-MU,NU,X), Q(0,NU,X), or Q(1,NU,X). The nu-wise
C recurrence is stable for P for all mu and for Q for mu=0,1.
C***LIBRARY SLATEC
C***CATEGORY C3A2, C9
C***TYPE DOUBLE PRECISION (XPQNU-S, DXPQNU-D)
C***KEYWORDS LEGENDRE FUNCTIONS
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED DXADD, DXADJ, DXPSI
C***COMMON BLOCKS DXBLK1
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXPQNU
DOUBLE PRECISION A,NU,NU1,NU2,PQ,PQA,DXPSI,R,W,X,X1,X2,SX,XS,
1 Y,Z
DOUBLE PRECISION DI,DMU,PQ1,PQ2,FACTMU,FLOK
DIMENSION PQA(*),IPQA(*)
COMMON /DXBLK1/ NBITSF
SAVE /DXBLK1/
C
C J0, IPSIK, AND IPSIX ARE INITIALIZED IN THIS SUBROUTINE.
C J0 IS THE NUMBER OF TERMS USED IN SERIES EXPANSION
C IN SUBROUTINE DXPQNU.
C IPSIK, IPSIX ARE VALUES OF K AND X RESPECTIVELY
C USED IN THE CALCULATION OF THE DXPSI FUNCTION.
C
C***FIRST EXECUTABLE STATEMENT DXPQNU
IERROR=0
J0=NBITSF
IPSIK=1+(NBITSF/10)
IPSIX=5*IPSIK
IPQ=0
C FIND NU IN INTERVAL [-.5,.5) IF ID=2 ( CALCULATION OF Q )
NU=MOD(NU1,1.D0)
IF(NU.GE..5D0) NU=NU-1.D0
C FIND NU IN INTERVAL (-1.5,-.5] IF ID=1,3, OR 4 ( CALC. OF P )
IF(ID.NE.2.AND.NU.GT.-.5D0) NU=NU-1.D0
C CALCULATE MU FACTORIAL
K=MU
DMU=MU
IF(MU.LE.0) GO TO 60
FACTMU=1.D0
IF=0
DO 50 I=1,K
FACTMU=FACTMU*I
50 CALL DXADJ(FACTMU,IF,IERROR)
IF (IERROR.NE.0) RETURN
60 IF(K.EQ.0) FACTMU=1.D0
IF(K.EQ.0) IF=0
C
C X=COS(THETA)
C Y=SIN(THETA/2)**2=(1-X)/2=.5-.5*X
C R=TAN(THETA/2)=SQRT((1-X)/(1+X)
C
Y=0.5d0*(1.d0-X)
R=sqrt((1.d0-X)/(1.d0+X))
C
C USE ASCENDING SERIES TO CALCULATE TWO VALUES OF P OR Q
C FOR USE AS STARTING VALUES IN RECURRENCE RELATION.
C
PQ2=0.0D0
DO 100 J=1,2
IPQ1=0
IF(ID.EQ.2) GO TO 80
C
C SERIES FOR P ( ID = 1, 3, OR 4 )
C P(-MU,NU,X)=1./FACTORIAL(MU)*SQRT(((1.-X)/(1.+X))**MU)
C *SUM(FROM 0 TO J0-1)A(J)*(.5-.5*X)**J
C
IPQ=0
PQ=1.D0
A=1.D0
IA=0
DO 65 I=2,J0
DI=I
A=A*Y*(DI-2.D0-NU)*(DI-1.D0+NU)/((DI-1.D0+DMU)*(DI-1.D0))
CALL DXADJ(A,IA,IERROR)
IF (IERROR.NE.0) RETURN
IF(A.EQ.0.D0) GO TO 66
CALL DXADD(PQ,IPQ,A,IA,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
65 CONTINUE
66 CONTINUE
IF(MU.LE.0) GO TO 90
X2=R
X1=PQ
K=MU
DO 77 I=1,K
X1=X1*X2
77 CALL DXADJ(X1,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
PQ=X1/FACTMU
IPQ=IPQ-IF
CALL DXADJ(PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
GO TO 90
C
C Z=-LN(R)=.5*LN((1+X)/(1-X))
C
80 Z=-LOG(R)
W=DXPSI(NU+1.D0,IPSIK,IPSIX)
XS = SX ! pour le cas ou XS serait modifie par la suite
* XS=1.D0/SIN(THETA)
C
C SERIES SUMMATION FOR Q ( ID = 2 )
C Q(0,NU,X)=SUM(FROM 0 TO J0-1)((.5*LN((1+X)/(1-X))
C +DXPSI(J+1,IPSIK,IPSIX)-DXPSI(NU+1,IPSIK,IPSIX)))*A(J)*(.5-.5*X)**J
C
C Q(1,NU,X)=-SQRT(1./(1.-X**2))+SQRT((1-X)/(1+X))
C *SUM(FROM 0 T0 J0-1)(-NU*(NU+1)/2*LN((1+X)/(1-X))
C +(J-NU)*(J+NU+1)/(2*(J+1))+NU*(NU+1)*
C (DXPSI(NU+1,IPSIK,IPSIX)-DXPSI(J+1,IPSIK,IPSIX))*A(J)*(.5-.5*X)**J
C
C NOTE, IN THIS LOOP K=J+1
C
PQ=0.D0
IPQ=0
IA=0
A=1.D0
DO 85 K=1,J0
FLOK=K
IF(K.EQ.1) GO TO 81
A=A*Y*(FLOK-2.D0-NU)*(FLOK-1.D0+NU)/((FLOK-1.D0+DMU)*(FLOK-1.D0))
CALL DXADJ(A,IA,IERROR)
IF (IERROR.NE.0) RETURN
81 CONTINUE
IF(MU.GE.1) GO TO 83
X1=(DXPSI(FLOK,IPSIK,IPSIX)-W+Z)*A
IX1=IA
CALL DXADD(PQ,IPQ,X1,IX1,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
GO TO 85
83 X1=(NU*(NU+1.D0)*(Z-W+DXPSI(FLOK,IPSIK,IPSIX))+(NU-FLOK+1.D0)
1 *(NU+FLOK)/(2.D0*FLOK))*A
IX1=IA
CALL DXADD(PQ,IPQ,X1,IX1,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
85 CONTINUE
IF(MU.GE.1) PQ=-R*PQ
IXS=0
IF(MU.GE.1) CALL DXADD(PQ,IPQ,-XS,IXS,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
IF(J.EQ.2) MU=-MU
IF(J.EQ.2) DMU=-DMU
90 IF(J.EQ.1) PQ2=PQ
IF(J.EQ.1) IPQ2=IPQ
NU=NU+1.D0
100 CONTINUE
K=0
IF(NU-1.5D0.LT.NU1) GO TO 120
K=K+1
PQA(K)=PQ2
IPQA(K)=IPQ2
IF(NU.GT.NU2+.5D0) RETURN
120 PQ1=PQ
IPQ1=IPQ
IF(NU.LT.NU1+.5D0) GO TO 130
K=K+1
PQA(K)=PQ
IPQA(K)=IPQ
IF(NU.GT.NU2+.5D0) RETURN
C
C FORWARD NU-WISE RECURRENCE FOR F(MU,NU,X) FOR FIXED MU
C USING
C (NU+MU+1)*F(MU,NU,X)=(2.*NU+1)*F(MU,NU,X)-(NU-MU)*F(MU,NU-1,X)
C WHERE F(MU,NU,X) MAY BE P(-MU,NU,X) OR IF MU IS REPLACED
C BY -MU THEN F(MU,NU,X) MAY BE Q(MU,NU,X).
C NOTE, IN THIS LOOP, NU=NU+1
C
130 X1=(2.D0*NU-1.D0)/(NU+DMU)*X*PQ1
X2=(NU-1.D0-DMU)/(NU+DMU)*PQ2
CALL DXADD(X1,IPQ1,-X2,IPQ2,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
CALL DXADJ(PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
NU=NU+1.D0
PQ2=PQ1
IPQ2=IPQ1
GO TO 120
C
END
*DECK DXPSI
DOUBLE PRECISION FUNCTION DXPSI (A, IPSIK, IPSIX)
C***BEGIN PROLOGUE DXPSI
C***SUBSIDIARY
C***PURPOSE To compute values of the Psi function for DXLEGF.
C***LIBRARY SLATEC
C***CATEGORY C7C
C***TYPE DOUBLE PRECISION (XPSI-S, DXPSI-D)
C***KEYWORDS PSI FUNCTION
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXPSI
DOUBLE PRECISION A,B,C,CNUM,CDENOM
DIMENSION CNUM(12),CDENOM(12)
SAVE CNUM, CDENOM
C
C CNUM(I) AND CDENOM(I) ARE THE ( REDUCED ) NUMERATOR
C AND 2*I*DENOMINATOR RESPECTIVELY OF THE 2*I TH BERNOULLI
C NUMBER.
C
DATA CNUM(1),CNUM(2),CNUM(3),CNUM(4),CNUM(5),CNUM(6),CNUM(7),
1CNUM(8),CNUM(9),CNUM(10),CNUM(11),CNUM(12)
2 / 1.D0, -1.D0, 1.D0, -1.D0, 1.D0,
3 -691.D0, 1.D0, -3617.D0, 43867.D0, -174611.D0, 77683.D0,
4 -236364091.D0/
DATA CDENOM(1),CDENOM(2),CDENOM(3),CDENOM(4),CDENOM(5),CDENOM(6),
1 CDENOM(7),CDENOM(8),CDENOM(9),CDENOM(10),CDENOM(11),CDENOM(12)
2/12.D0,120.D0, 252.D0, 240.D0,132.D0,
3 32760.D0, 12.D0, 8160.D0, 14364.D0, 6600.D0, 276.D0, 65520.D0/
C***FIRST EXECUTABLE STATEMENT DXPSI
N=MAX(0,IPSIX-INT(A))
B=N+A
K1=IPSIK-1
C
C SERIES EXPANSION FOR A .GT. IPSIX USING IPSIK-1 TERMS.
C
C=0.D0
DO 12 I=1,K1
K=IPSIK-I
12 C=(C+CNUM(K)/CDENOM(K))/B**2
DXPSI=LOG(B)-(C+.5D0/B)
IF(N.EQ.0) GO TO 20
B=0.D0
C
C RECURRENCE FOR A .LE. IPSIX.
C
DO 15 M=1,N
15 B=B+1.D0/(N-M+A)
DXPSI=DXPSI-B
20 RETURN
END
*DECK DXQMU
SUBROUTINE DXQMU (NU1, NU2, MU1, MU2, X, SX, ID, PQA, IPQA,
1 IERROR)
C***BEGIN PROLOGUE DXQMU
C***SUBSIDIARY
C***PURPOSE To compute the values of Legendre functions for DXLEGF.
C Method: forward mu-wise recurrence for Q(MU,NU,X) for fixed
C nu to obtain Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X).
C***LIBRARY SLATEC
C***CATEGORY C3A2, C9
C***TYPE DOUBLE PRECISION (XQMU-S, DXQMU-D)
C***KEYWORDS LEGENDRE FUNCTIONS
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED DXADD, DXADJ, DXPQNU
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXQMU
DIMENSION PQA(*),IPQA(*)
DOUBLE PRECISION DMU,NU,NU1,NU2,PQ,PQA,PQ1,PQ2,SX,X,X1,X2
C***FIRST EXECUTABLE STATEMENT DXQMU
IERROR=0
MU=0
C
C CALL DXPQNU TO OBTAIN Q(0.,NU1,X)
C
CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
PQ2=PQA(1)
IPQ2=IPQA(1)
MU=1
C
C CALL DXPQNU TO OBTAIN Q(1.,NU1,X)
C
CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
NU=NU1
K=0
MU=1
DMU=1.D0
PQ1=PQA(1)
IPQ1=IPQA(1)
IF(MU1.GT.0) GO TO 310
K=K+1
PQA(K)=PQ2
IPQA(K)=IPQ2
IF(MU2.LT.1) GO TO 330
310 IF(MU1.GT.1) GO TO 320
K=K+1
PQA(K)=PQ1
IPQA(K)=IPQ1
IF(MU2.LE.1) GO TO 330
320 CONTINUE
C
C FORWARD RECURRENCE IN MU TO OBTAIN
C Q(MU1,NU,X),Q(MU1+1,NU,X),....,Q(MU2,NU,X) USING
C Q(MU+1,NU,X)=-2.*MU*X*SQRT(1./(1.-X**2))*Q(MU,NU,X)
C -(NU+MU)*(NU-MU+1.)*Q(MU-1,NU,X)
C
X1=-2.D0*DMU*X*SX*PQ1
X2=(NU+DMU)*(NU-DMU+1.D0)*PQ2
CALL DXADD(X1,IPQ1,-X2,IPQ2,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
CALL DXADJ(PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
PQ2=PQ1
IPQ2=IPQ1
PQ1=PQ
IPQ1=IPQ
MU=MU+1
DMU=DMU+1.D0
IF(MU.LT.MU1) GO TO 320
K=K+1
PQA(K)=PQ
IPQA(K)=IPQ
IF(MU2.GT.MU) GO TO 320
330 RETURN
END
*DECK DXQNU
SUBROUTINE DXQNU (NU1, NU2, MU1, X, SX, ID, PQA, IPQA,
1 IERROR)
C***BEGIN PROLOGUE DXQNU
C***SUBSIDIARY
C***PURPOSE To compute the values of Legendre functions for DXLEGF.
C Method: backward nu-wise recurrence for Q(MU,NU,X) for
C fixed mu to obtain Q(MU1,NU1,X), Q(MU1,NU1+1,X), ...,
C Q(MU1,NU2,X).
C***LIBRARY SLATEC
C***CATEGORY C3A2, C9
C***TYPE DOUBLE PRECISION (XQNU-S, DXQNU-D)
C***KEYWORDS LEGENDRE FUNCTIONS
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED DXADD, DXADJ, DXPQNU
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXQNU
DIMENSION PQA(*),IPQA(*)
DOUBLE PRECISION DMU,NU,NU1,NU2,PQ,PQA,PQ1,PQ2,SX,X,X1,X2
DOUBLE PRECISION PQL1,PQL2
C***FIRST EXECUTABLE STATEMENT DXQNU
IERROR=0
K=0
PQ2=0.0D0
IPQ2=0
PQL2=0.0D0
IPQL2=0
IF(MU1.EQ.1) GO TO 290
MU=0
C
C CALL DXPQNU TO OBTAIN Q(0.,NU2,X) AND Q(0.,NU2-1,X)
C
CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
IF(MU1.EQ.0) RETURN
K=(NU2-NU1+1.5D0)
PQ2=PQA(K)
IPQ2=IPQA(K)
PQL2=PQA(K-1)
IPQL2=IPQA(K-1)
290 MU=1
C
C CALL DXPQNU TO OBTAIN Q(1.,NU2,X) AND Q(1.,NU2-1,X)
C
CALL DXPQNU(NU1,NU2,MU,X,SX,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
IF(MU1.EQ.1) RETURN
NU=NU2
PQ1=PQA(K)
IPQ1=IPQA(K)
PQL1=PQA(K-1)
IPQL1=IPQA(K-1)
300 MU=1
DMU=1.D0
320 CONTINUE
C
C FORWARD RECURRENCE IN MU TO OBTAIN Q(MU1,NU2,X) AND
C Q(MU1,NU2-1,X) USING
C Q(MU+1,NU,X)=-2.*MU*X*SQRT(1./(1.-X**2))*Q(MU,NU,X)
C -(NU+MU)*(NU-MU+1.)*Q(MU-1,NU,X)
C
C FIRST FOR NU=NU2
C
X1=-2.D0*DMU*X*SX*PQ1
X2=(NU+DMU)*(NU-DMU+1.D0)*PQ2
CALL DXADD(X1,IPQ1,-X2,IPQ2,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
CALL DXADJ(PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
PQ2=PQ1
IPQ2=IPQ1
PQ1=PQ
IPQ1=IPQ
MU=MU+1
DMU=DMU+1.D0
IF(MU.LT.MU1) GO TO 320
PQA(K)=PQ
IPQA(K)=IPQ
IF(K.EQ.1) RETURN
IF(NU.LT.NU2) GO TO 340
C
C THEN FOR NU=NU2-1
C
NU=NU-1.D0
PQ2=PQL2
IPQ2=IPQL2
PQ1=PQL1
IPQ1=IPQL1
K=K-1
GO TO 300
C
C BACKWARD RECURRENCE IN NU TO OBTAIN
C Q(MU1,NU1,X),Q(MU1,NU1+1,X),....,Q(MU1,NU2,X)
C USING
C (NU-MU+1.)*Q(MU,NU+1,X)=
C (2.*NU+1.)*X*Q(MU,NU,X)-(NU+MU)*Q(MU,NU-1,X)
C
340 PQ1=PQA(K)
IPQ1=IPQA(K)
PQ2=PQA(K+1)
IPQ2=IPQA(K+1)
350 IF(NU.LE.NU1) RETURN
K=K-1
X1=(2.D0*NU+1.D0)*X*PQ1/(NU+DMU)
X2=-(NU-DMU+1.D0)*PQ2/(NU+DMU)
CALL DXADD(X1,IPQ1,X2,IPQ2,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
CALL DXADJ(PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
PQ2=PQ1
IPQ2=IPQ1
PQ1=PQ
IPQ1=IPQ
PQA(K)=PQ
IPQA(K)=IPQ
NU=NU-1.D0
GO TO 350
END
*DECK DXRED
SUBROUTINE DXRED (X, IX, IERROR)
C***BEGIN PROLOGUE DXRED
C***PURPOSE To provide double-precision floating-point arithmetic
C with an extended exponent range.
C***LIBRARY SLATEC
C***CATEGORY A3D
C***TYPE DOUBLE PRECISION (XRED-S, DXRED-D)
C***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
C Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C DOUBLE PRECISION X
C INTEGER IX
C
C IF
C RADIX**(-2L) .LE. (ABS(X),IX) .LE. RADIX**(2L)
C THEN DXRED TRANSFORMS (X,IX) SO THAT IX=0.
C IF (X,IX) IS OUTSIDE THE ABOVE RANGE,
C THEN DXRED TAKES NO ACTION.
C THIS SUBROUTINE IS USEFUL IF THE
C RESULTS OF EXTENDED-RANGE CALCULATIONS
C ARE TO BE USED IN SUBSEQUENT ORDINARY
C DOUBLE-PRECISION CALCULATIONS.
C
C***SEE ALSO DXSET
C***REFERENCES (NONE)
C***ROUTINES CALLED (NONE)
C***COMMON BLOCKS DXBLK2
C***REVISION HISTORY (YYMMDD)
C 820712 DATE WRITTEN
C 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXRED
DOUBLE PRECISION X
INTEGER IX
DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R, XA
INTEGER L, L2, KMAX
COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
SAVE /DXBLK2/
C
C***FIRST EXECUTABLE STATEMENT DXRED
IERROR=0
IF (X.EQ.0.0D0) GO TO 90
XA = ABS(X)
IF (IX.EQ.0) GO TO 70
IXA = ABS(IX)
IXA1 = IXA/L2
IXA2 = MOD(IXA,L2)
IF (IX.GT.0) GO TO 40
10 CONTINUE
IF (XA.GT.1.0D0) GO TO 20
XA = XA*RAD2L
IXA1 = IXA1 + 1
GO TO 10
20 XA = XA/RADIX**IXA2
IF (IXA1.EQ.0) GO TO 70
DO 30 I=1,IXA1
IF (XA.LT.1.0D0) GO TO 100
XA = XA/RAD2L
30 CONTINUE
GO TO 70
C
40 CONTINUE
IF (XA.LT.1.0D0) GO TO 50
XA = XA/RAD2L
IXA1 = IXA1 + 1
GO TO 40
50 XA = XA*RADIX**IXA2
IF (IXA1.EQ.0) GO TO 70
DO 60 I=1,IXA1
IF (XA.GT.1.0D0) GO TO 100
XA = XA*RAD2L
60 CONTINUE
70 IF (XA.GT.RAD2L) GO TO 100
IF (XA.GT.1.0D0) GO TO 80
IF (RAD2L*XA.LT.1.0D0) GO TO 100
80 X = SIGN(XA,X)
90 IX = 0
100 RETURN
END
*DECK DXSET
SUBROUTINE DXSET (IRAD, NRADPL, DZERO, NBITS, IERROR)
C***BEGIN PROLOGUE DXSET
C***PURPOSE To provide double-precision floating-point arithmetic
C with an extended exponent range.
C***LIBRARY SLATEC
C***CATEGORY A3D
C***TYPE DOUBLE PRECISION (XSET-S, DXSET-D)
C***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
C Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C
C SUBROUTINE DXSET MUST BE CALLED PRIOR TO CALLING ANY OTHER
C EXTENDED-RANGE SUBROUTINE. IT CALCULATES AND STORES SEVERAL
C MACHINE-DEPENDENT CONSTANTS IN COMMON BLOCKS. THE USER MUST
C SUPPLY FOUR CONSTANTS THAT PERTAIN TO HIS PARTICULAR COMPUTER.
C THE CONSTANTS ARE
C
C IRAD = THE INTERNAL BASE OF DOUBLE-PRECISION
C ARITHMETIC IN THE COMPUTER.
C NRADPL = THE NUMBER OF RADIX PLACES CARRIED IN
C THE DOUBLE-PRECISION REPRESENTATION.
C DZERO = THE SMALLEST OF 1/DMIN, DMAX, DMAXLN WHERE
C DMIN = THE SMALLEST POSITIVE DOUBLE-PRECISION
C NUMBER OR AN UPPER BOUND TO THIS NUMBER,
C DMAX = THE LARGEST DOUBLE-PRECISION NUMBER
C OR A LOWER BOUND TO THIS NUMBER,
C DMAXLN = THE LARGEST DOUBLE-PRECISION NUMBER
C SUCH THAT LOG10(DMAXLN) CAN BE COMPUTED BY THE
C FORTRAN SYSTEM (ON MOST SYSTEMS DMAXLN = DMAX).
C NBITS = THE NUMBER OF BITS (EXCLUSIVE OF SIGN) IN
C AN INTEGER COMPUTER WORD.
C
C ALTERNATIVELY, ANY OR ALL OF THE CONSTANTS CAN BE GIVEN
C THE VALUE 0 (0.0D0 FOR DZERO). IF A CONSTANT IS ZERO, DXSET TRIES
C TO ASSIGN AN APPROPRIATE VALUE BY CALLING I1MACH
C (SEE P.A.FOX, A.D.HALL, N.L.SCHRYER, ALGORITHM 528 FRAMEWORK
C FOR A PORTABLE LIBRARY, ACM TRANSACTIONS ON MATH SOFTWARE,
C V.4, NO.2, JUNE 1978, 177-188).
C
C THIS IS THE SETTING-UP SUBROUTINE FOR A PACKAGE OF SUBROUTINES
C THAT FACILITATE THE USE OF EXTENDED-RANGE ARITHMETIC. EXTENDED-RANGE
C ARITHMETIC ON A PARTICULAR COMPUTER IS DEFINED ON THE SET OF NUMBERS
C OF THE FORM
C
C (X,IX) = X*RADIX**IX
C
C WHERE X IS A DOUBLE-PRECISION NUMBER CALLED THE PRINCIPAL PART,
C IX IS AN INTEGER CALLED THE AUXILIARY INDEX, AND RADIX IS THE
C INTERNAL BASE OF THE DOUBLE-PRECISION ARITHMETIC. OBVIOUSLY,
C EACH REAL NUMBER IS REPRESENTABLE WITHOUT ERROR BY MORE THAN ONE
C EXTENDED-RANGE FORM. CONVERSIONS BETWEEN DIFFERENT FORMS ARE
C ESSENTIAL IN CARRYING OUT ARITHMETIC OPERATIONS. WITH THE CHOICE
C OF RADIX WE HAVE MADE, AND THE SUBROUTINES WE HAVE WRITTEN, THESE
C CONVERSIONS ARE PERFORMED WITHOUT ERROR (AT LEAST ON MOST COMPUTERS).
C (SEE SMITH, J.M., OLVER, F.W.J., AND LOZIER, D.W., EXTENDED-RANGE
C ARITHMETIC AND NORMALIZED LEGENDRE POLYNOMIALS, ACM TRANSACTIONS ON
C MATHEMATICAL SOFTWARE, MARCH 1981).
C
C AN EXTENDED-RANGE NUMBER (X,IX) IS SAID TO BE IN ADJUSTED FORM IF
C X AND IX ARE ZERO OR
C
C RADIX**(-L) .LE. ABS(X) .LT. RADIX**L
C
C IS SATISFIED, WHERE L IS A COMPUTER-DEPENDENT INTEGER DEFINED IN THIS
C SUBROUTINE. TWO EXTENDED-RANGE NUMBERS IN ADJUSTED FORM CAN BE ADDED,
C SUBTRACTED, MULTIPLIED OR DIVIDED (IF THE DIVISOR IS NONZERO) WITHOUT
C CAUSING OVERFLOW OR UNDERFLOW IN THE PRINCIPAL PART OF THE RESULT.
C WITH PROPER USE OF THE EXTENDED-RANGE SUBROUTINES, THE ONLY OVERFLOW
C THAT CAN OCCUR IS INTEGER OVERFLOW IN THE AUXILIARY INDEX. IF THIS
C IS DETECTED, THE SOFTWARE CALLS XERROR (A GENERAL ERROR-HANDLING
C FORTRAN SUBROUTINE PACKAGE).
C
C MULTIPLICATION AND DIVISION IS PERFORMED BY SETTING
C
C (X,IX)*(Y,IY) = (X*Y,IX+IY)
C OR
C (X,IX)/(Y,IY) = (X/Y,IX-IY).
C
C PRE-ADJUSTMENT OF THE OPERANDS IS ESSENTIAL TO AVOID
C OVERFLOW OR UNDERFLOW OF THE PRINCIPAL PART. SUBROUTINE
C DXADJ (SEE BELOW) MAY BE CALLED TO TRANSFORM ANY EXTENDED-
C RANGE NUMBER INTO ADJUSTED FORM.
C
C ADDITION AND SUBTRACTION REQUIRE THE USE OF SUBROUTINE DXADD
C (SEE BELOW). THE INPUT OPERANDS NEED NOT BE IN ADJUSTED FORM.
C HOWEVER, THE RESULT OF ADDITION OR SUBTRACTION IS RETURNED
C IN ADJUSTED FORM. THUS, FOR EXAMPLE, IF (X,IX),(Y,IY),
C (U,IU), AND (V,IV) ARE IN ADJUSTED FORM, THEN
C
C (X,IX)*(Y,IY) + (U,IU)*(V,IV)
C
C CAN BE COMPUTED AND STORED IN ADJUSTED FORM WITH NO EXPLICIT
C CALLS TO DXADJ.
C
C WHEN AN EXTENDED-RANGE NUMBER IS TO BE PRINTED, IT MUST BE
C CONVERTED TO AN EXTENDED-RANGE FORM WITH DECIMAL RADIX. SUBROUTINE
C DXCON IS PROVIDED FOR THIS PURPOSE.
C
C THE SUBROUTINES CONTAINED IN THIS PACKAGE ARE
C
C SUBROUTINE DXADD
C USAGE
C CALL DXADD(X,IX,Y,IY,Z,IZ,IERROR)
C IF (IERROR.NE.0) RETURN
C DESCRIPTION
C FORMS THE EXTENDED-RANGE SUM (Z,IZ) =
C (X,IX) + (Y,IY). (Z,IZ) IS ADJUSTED
C BEFORE RETURNING. THE INPUT OPERANDS
C NEED NOT BE IN ADJUSTED FORM, BUT THEIR
C PRINCIPAL PARTS MUST SATISFY
C RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
C RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).
C
C SUBROUTINE DXADJ
C USAGE
C CALL DXADJ(X,IX,IERROR)
C IF (IERROR.NE.0) RETURN
C DESCRIPTION
C TRANSFORMS (X,IX) SO THAT
C RADIX**(-L) .LE. ABS(X) .LT. RADIX**L.
C ON MOST COMPUTERS THIS TRANSFORMATION DOES
C NOT CHANGE THE MANTISSA OF X PROVIDED RADIX IS
C THE NUMBER BASE OF DOUBLE-PRECISION ARITHMETIC.
C
C SUBROUTINE DXC210
C USAGE
C CALL DXC210(K,Z,J,IERROR)
C IF (IERROR.NE.0) RETURN
C DESCRIPTION
C GIVEN K THIS SUBROUTINE COMPUTES J AND Z
C SUCH THAT RADIX**K = Z*10**J, WHERE Z IS IN
C THE RANGE 1/10 .LE. Z .LT. 1.
C THE VALUE OF Z WILL BE ACCURATE TO FULL
C DOUBLE-PRECISION PROVIDED THE NUMBER
C OF DECIMAL PLACES IN THE LARGEST
C INTEGER PLUS THE NUMBER OF DECIMAL
C PLACES CARRIED IN DOUBLE-PRECISION DOES NOT
C EXCEED 60. DXC210 IS CALLED BY SUBROUTINE
C DXCON WHEN NECESSARY. THE USER SHOULD
C NEVER NEED TO CALL DXC210 DIRECTLY.
C
C SUBROUTINE DXCON
C USAGE
C CALL DXCON(X,IX,IERROR)
C IF (IERROR.NE.0) RETURN
C DESCRIPTION
C CONVERTS (X,IX) = X*RADIX**IX
C TO DECIMAL FORM IN PREPARATION FOR
C PRINTING, SO THAT (X,IX) = X*10**IX
C WHERE 1/10 .LE. ABS(X) .LT. 1
C IS RETURNED, EXCEPT THAT IF
C (ABS(X),IX) IS BETWEEN RADIX**(-2L)
C AND RADIX**(2L) THEN THE REDUCED
C FORM WITH IX = 0 IS RETURNED.
C
C SUBROUTINE DXRED
C USAGE
C CALL DXRED(X,IX,IERROR)
C IF (IERROR.NE.0) RETURN
C DESCRIPTION
C IF
C RADIX**(-2L) .LE. (ABS(X),IX) .LE. RADIX**(2L)
C THEN DXRED TRANSFORMS (X,IX) SO THAT IX=0.
C IF (X,IX) IS OUTSIDE THE ABOVE RANGE,
C THEN DXRED TAKES NO ACTION.
C THIS SUBROUTINE IS USEFUL IF THE
C RESULTS OF EXTENDED-RANGE CALCULATIONS
C ARE TO BE USED IN SUBSEQUENT ORDINARY
C DOUBLE-PRECISION CALCULATIONS.
C
C***REFERENCES Smith, Olver and Lozier, Extended-Range Arithmetic and
C Normalized Legendre Polynomials, ACM Trans on Math
C Softw, v 7, n 1, March 1981, pp 93--105.
C***ROUTINES CALLED I1MACH, XERMSG
C***COMMON BLOCKS DXBLK1, DXBLK2, DXBLK3
C***REVISION HISTORY (YYMMDD)
C 820712 DATE WRITTEN
C 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C CALLs to XERROR changed to CALLs to XERMSG. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXSET
INTEGER IRAD, NRADPL, NBITS
DOUBLE PRECISION DZERO, DZEROX
COMMON /DXBLK1/ NBITSF
SAVE /DXBLK1/
DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R
INTEGER L, L2, KMAX
COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
SAVE /DXBLK2/
INTEGER NLG102, MLG102, LG102
COMMON /DXBLK3/ NLG102, MLG102, LG102(21)
SAVE /DXBLK3/
INTEGER IFLAG
SAVE IFLAG
* dlamch is used in place of i1mach :
double precision dlamch
external dlamch
C
DIMENSION LOG102(20), LGTEMP(20)
SAVE LOG102
C
C LOG102 CONTAINS THE FIRST 60 DIGITS OF LOG10(2) FOR USE IN
C CONVERSION OF EXTENDED-RANGE NUMBERS TO BASE 10 .
DATA LOG102 /301,029,995,663,981,195,213,738,894,724,493,026,768,
* 189,881,462,108,541,310,428/
C
C FOLLOWING CODING PREVENTS DXSET FROM BEING EXECUTED MORE THAN ONCE.
C THIS IS IMPORTANT BECAUSE SOME SUBROUTINES (SUCH AS DXNRMP AND
C DXLEGF) CALL DXSET TO MAKE SURE EXTENDED-RANGE ARITHMETIC HAS
C BEEN INITIALIZED. THE USER MAY WANT TO PRE-EMPT THIS CALL, FOR
C EXAMPLE WHEN I1MACH IS NOT AVAILABLE. SEE CODING BELOW.
DATA IFLAG /0/
C***FIRST EXECUTABLE STATEMENT DXSET
IERROR=0
IF (IFLAG .NE. 0) RETURN
IRADX = IRAD
NRDPLC = NRADPL
DZEROX = DZERO
IMINEX = 0
IMAXEX = 0
NBITSX = NBITS
C FOLLOWING 5 STATEMENTS SHOULD BE DELETED IF I1MACH IS
C NOT AVAILABLE OR NOT CONFIGURED TO RETURN THE CORRECT
C MACHINE-DEPENDENT VALUES.
*
* modif : use a call to dlamch in place of I1MACH
IF (IRADX .EQ. 0) IRADX = int(dlamch('b')) ! I1MACH (10)
IF (NRDPLC .EQ. 0) NRDPLC = int(dlamch('t')) ! I1MACH (14)
IF (DZEROX .EQ. 0.0D0) IMINEX = int(dlamch('m')) ! I1MACH (15)
IF (DZEROX .EQ. 0.0D0) IMAXEX = int(dlamch('l')) ! I1MACH (16)
IF (NBITSX .EQ. 0) NBITSX = 31 ! I1MACH (8)
IF (IRADX.EQ.2) GO TO 10
IF (IRADX.EQ.4) GO TO 10
IF (IRADX.EQ.8) GO TO 10
IF (IRADX.EQ.16) GO TO 10
* CALL XERMSG ('SLATEC', 'DXSET', 'IMPROPER VALUE OF IRAD', 201, 1)
IERROR=201
RETURN
10 CONTINUE
LOG2R=0
IF (IRADX.EQ.2) LOG2R = 1
IF (IRADX.EQ.4) LOG2R = 2
IF (IRADX.EQ.8) LOG2R = 3
IF (IRADX.EQ.16) LOG2R = 4
NBITSF=LOG2R*NRDPLC
RADIX = IRADX
DLG10R = LOG10(RADIX)
IF (DZEROX .NE. 0.0D0) GO TO 14
LX = MIN ((1-IMINEX)/2, (IMAXEX-1)/2)
GO TO 16
14 LX = 0.5D0*LOG10(DZEROX)/DLG10R
C RADIX**(2*L) SHOULD NOT OVERFLOW, BUT REDUCE L BY 1 FOR FURTHER
C PROTECTION.
LX=LX-1
16 L2 = 2*LX
IF (LX.GE.4) GO TO 20
* CALL XERMSG ('SLATEC', 'DXSET', 'IMPROPER VALUE OF DZERO', 202, 1)
IERROR=202
RETURN
20 L = LX
RADIXL = RADIX**L
RAD2L = RADIXL**2
C IT IS NECESSARY TO RESTRICT NBITS (OR NBITSX) TO BE LESS THAN SOME
C UPPER LIMIT BECAUSE OF BINARY-TO-DECIMAL CONVERSION. SUCH CONVERSION
C IS DONE BY DXC210 AND REQUIRES A CONSTANT THAT IS STORED TO SOME FIXED
C PRECISION. THE STORED CONSTANT (LOG102 IN THIS ROUTINE) PROVIDES
C FOR CONVERSIONS ACCURATE TO THE LAST DECIMAL DIGIT WHEN THE INTEGER
C WORD LENGTH DOES NOT EXCEED 63. A LOWER LIMIT OF 15 BITS IS IMPOSED
C BECAUSE THE SOFTWARE IS DESIGNED TO RUN ON COMPUTERS WITH INTEGER WORD
C LENGTH OF AT LEAST 16 BITS.
IF (15.LE.NBITSX .AND. NBITSX.LE.63) GO TO 30
* CALL XERMSG ('SLATEC', 'DXSET', 'IMPROPER VALUE OF NBITS', 203, 1)
IERROR=203
RETURN
30 CONTINUE
KMAX = 2**(NBITSX-1) - L2
NB = (NBITSX-1)/2
MLG102 = 2**NB
IF (1.LE.NRDPLC*LOG2R .AND. NRDPLC*LOG2R.LE.120) GO TO 40
* CALL XERMSG ('SLATEC', 'DXSET', 'IMPROPER VALUE OF NRADPL', 204,
* + 1)
IERROR=204
RETURN
40 CONTINUE
NLG102 = NRDPLC*LOG2R/NB + 3
NP1 = NLG102 + 1
C
C AFTER COMPLETION OF THE FOLLOWING LOOP, IC CONTAINS
C THE INTEGER PART AND LGTEMP CONTAINS THE FRACTIONAL PART
C OF LOG10(IRADX) IN RADIX 1000.
IC = 0
DO 50 II=1,20
I = 21 - II
IT = LOG2R*LOG102(I) + IC
IC = IT/1000
LGTEMP(I) = MOD(IT,1000)
50 CONTINUE
C
C AFTER COMPLETION OF THE FOLLOWING LOOP, LG102 CONTAINS
C LOG10(IRADX) IN RADIX MLG102. THE RADIX POINT IS
C BETWEEN LG102(1) AND LG102(2).
LG102(1) = IC
DO 80 I=2,NP1
LG102X = 0
DO 70 J=1,NB
IC = 0
DO 60 KK=1,20
K = 21 - KK
IT = 2*LGTEMP(K) + IC
IC = IT/1000
LGTEMP(K) = MOD(IT,1000)
60 CONTINUE
LG102X = 2*LG102X + IC
70 CONTINUE
LG102(I) = LG102X
80 CONTINUE
C
C CHECK SPECIAL CONDITIONS REQUIRED BY SUBROUTINES...
IF (NRDPLC.LT.L) GO TO 90
* CALL XERMSG ('SLATEC', 'DXSET', 'NRADPL .GE. L', 205, 1)
IERROR=205
RETURN
90 IF (6*L.LE.KMAX) GO TO 100
* CALL XERMSG ('SLATEC', 'DXSET', '6*L .GT. KMAX', 206, 1)
IERROR=206
RETURN
100 CONTINUE
IFLAG = 1
RETURN
END
SUBROUTINE DXADD (X, IX, Y, IY, Z, IZ, IERROR)
C***BEGIN PROLOGUE DXADD
C***PURPOSE To provide double-precision floating-point arithmetic
C with an extended exponent range.
C***LIBRARY SLATEC
C***CATEGORY A3D
C***TYPE DOUBLE PRECISION (XADD-S, DXADD-D)
C***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
C Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C DOUBLE PRECISION X, Y, Z
C INTEGER IX, IY, IZ
C
C FORMS THE EXTENDED-RANGE SUM (Z,IZ) =
C (X,IX) + (Y,IY). (Z,IZ) IS ADJUSTED
C BEFORE RETURNING. THE INPUT OPERANDS
C NEED NOT BE IN ADJUSTED FORM, BUT THEIR
C PRINCIPAL PARTS MUST SATISFY
C RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
C RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).
C
C***SEE ALSO DXSET
C***REFERENCES (NONE)
C***ROUTINES CALLED DXADJ
C***COMMON BLOCKS DXBLK2
C***REVISION HISTORY (YYMMDD)
C 820712 DATE WRITTEN
C 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXADD
DOUBLE PRECISION X, Y, Z
INTEGER IX, IY, IZ
DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R
INTEGER L, L2, KMAX
COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
SAVE /DXBLK2/
DOUBLE PRECISION S, T
C
C THE CONDITIONS IMPOSED ON L AND KMAX BY THIS SUBROUTINE
C ARE
C (1) 1 .LT. L .LE. 0.5D0*LOGR(0.5D0*DZERO)
C
C (2) NRADPL .LT. L .LE. KMAX/6
C
C (3) KMAX .LE. (2**NBITS - 4*L - 1)/2
C
C THESE CONDITIONS MUST BE MET BY APPROPRIATE CODING
C IN SUBROUTINE DXSET.
C
C***FIRST EXECUTABLE STATEMENT DXADD
IERROR=0
IF (X.NE.0.0D0) GO TO 10
Z = Y
IZ = IY
GO TO 220
10 IF (Y.NE.0.0D0) GO TO 20
Z = X
IZ = IX
GO TO 220
20 CONTINUE
IF (IX.GE.0 .AND. IY.GE.0) GO TO 40
IF (IX.LT.0 .AND. IY.LT.0) GO TO 40
IF (ABS(IX).LE.6*L .AND. ABS(IY).LE.6*L) GO TO 40
IF (IX.GE.0) GO TO 30
Z = Y
IZ = IY
GO TO 220
30 CONTINUE
Z = X
IZ = IX
GO TO 220
40 I = IX - IY
IF (I) 80, 50, 90
50 IF (ABS(X).GT.1.0D0 .AND. ABS(Y).GT.1.0D0) GO TO 60
IF (ABS(X).LT.1.0D0 .AND. ABS(Y).LT.1.0D0) GO TO 70
Z = X + Y
IZ = IX
GO TO 220
60 S = X/RADIXL
T = Y/RADIXL
Z = S + T
IZ = IX + L
GO TO 220
70 S = X*RADIXL
T = Y*RADIXL
Z = S + T
IZ = IX - L
GO TO 220
80 S = Y
IS = IY
T = X
GO TO 100
90 S = X
IS = IX
T = Y
100 CONTINUE
C
C AT THIS POINT, THE ONE OF (X,IX) OR (Y,IY) THAT HAS THE
C LARGER AUXILIARY INDEX IS STORED IN (S,IS). THE PRINCIPAL
C PART OF THE OTHER INPUT IS STORED IN T.
C
I1 = ABS(I)/L
I2 = MOD(ABS(I),L)
IF (ABS(T).GE.RADIXL) GO TO 130
IF (ABS(T).GE.1.0D0) GO TO 120
IF (RADIXL*ABS(T).GE.1.0D0) GO TO 110
J = I1 + 1
T = T*RADIX**(L-I2)
GO TO 140
110 J = I1
T = T*RADIX**(-I2)
GO TO 140
120 J = I1 - 1
IF (J.LT.0) GO TO 110
T = T*RADIX**(-I2)/RADIXL
GO TO 140
130 J = I1 - 2
IF (J.LT.0) GO TO 120
T = T*RADIX**(-I2)/RAD2L
140 CONTINUE
C
C AT THIS POINT, SOME OR ALL OF THE DIFFERENCE IN THE
C AUXILIARY INDICES HAS BEEN USED TO EFFECT A LEFT SHIFT
C OF T. THE SHIFTED VALUE OF T SATISFIES
C
C RADIX**(-2*L) .LE. ABS(T) .LE. 1.0D0
C
C AND, IF J=0, NO FURTHER SHIFTING REMAINS TO BE DONE.
C
IF (J.EQ.0) GO TO 190
IF (ABS(S).GE.RADIXL .OR. J.GT.3) GO TO 150
IF (ABS(S).GE.1.0D0) GO TO (180, 150, 150), J
IF (RADIXL*ABS(S).GE.1.0D0) GO TO (180, 170, 150), J
GO TO (180, 170, 160), J
150 Z = S
IZ = IS
GO TO 220
160 S = S*RADIXL
170 S = S*RADIXL
180 S = S*RADIXL
190 CONTINUE
C
C AT THIS POINT, THE REMAINING DIFFERENCE IN THE
C AUXILIARY INDICES HAS BEEN USED TO EFFECT A RIGHT SHIFT
C OF S. IF THE SHIFTED VALUE OF S WOULD HAVE EXCEEDED
C RADIX**L, THEN (S,IS) IS RETURNED AS THE VALUE OF THE
C SUM.
C
IF (ABS(S).GT.1.0D0 .AND. ABS(T).GT.1.0D0) GO TO 200
IF (ABS(S).LT.1.0D0 .AND. ABS(T).LT.1.0D0) GO TO 210
Z = S + T
IZ = IS - J*L
GO TO 220
200 S = S/RADIXL
T = T/RADIXL
Z = S + T
IZ = IS - J*L + L
GO TO 220
210 S = S*RADIXL
T = T*RADIXL
Z = S + T
IZ = IS - J*L - L
220 CALL DXADJ(Z, IZ,IERROR)
RETURN
END
*DECK DXADJ
SUBROUTINE DXADJ (X, IX, IERROR)
C***BEGIN PROLOGUE DXADJ
C***PURPOSE To provide double-precision floating-point arithmetic
C with an extended exponent range.
C***LIBRARY SLATEC
C***CATEGORY A3D
C***TYPE DOUBLE PRECISION (XADJ-S, DXADJ-D)
C***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
C Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C DOUBLE PRECISION X
C INTEGER IX
C
C TRANSFORMS (X,IX) SO THAT
C RADIX**(-L) .LE. ABS(X) .LT. RADIX**L.
C ON MOST COMPUTERS THIS TRANSFORMATION DOES
C NOT CHANGE THE MANTISSA OF X PROVIDED RADIX IS
C THE NUMBER BASE OF DOUBLE-PRECISION ARITHMETIC.
C
C***SEE ALSO DXSET
C***REFERENCES (NONE)
C***ROUTINES CALLED XERMSG
C***COMMON BLOCKS DXBLK2
C***REVISION HISTORY (YYMMDD)
C 820712 DATE WRITTEN
C 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C CALLs to XERROR changed to CALLs to XERMSG. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXADJ
DOUBLE PRECISION X
INTEGER IX
DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R
INTEGER L, L2, KMAX
COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
SAVE /DXBLK2/
C
C THE CONDITION IMPOSED ON L AND KMAX BY THIS SUBROUTINE
C IS
C 2*L .LE. KMAX
C
C THIS CONDITION MUST BE MET BY APPROPRIATE CODING
C IN SUBROUTINE DXSET.
C
C***FIRST EXECUTABLE STATEMENT DXADJ
IERROR=0
IF (X.EQ.0.0D0) GO TO 50
IF (ABS(X).GE.1.0D0) GO TO 20
IF (RADIXL*ABS(X).GE.1.0D0) GO TO 60
X = X*RAD2L
IF (IX.LT.0) GO TO 10
IX = IX - L2
GO TO 70
10 IF (IX.LT.-KMAX+L2) GO TO 40
IX = IX - L2
GO TO 70
20 IF (ABS(X).LT.RADIXL) GO TO 60
X = X/RAD2L
IF (IX.GT.0) GO TO 30
IX = IX + L2
GO TO 70
30 IF (IX.GT.KMAX-L2) GO TO 40
IX = IX + L2
GO TO 70
40 continue
* 40 CALL XERMSG ('SLATEC', 'DXADJ', 'overflow in auxiliary index',
* + 207, 1)
IERROR=207
RETURN
50 IX = 0
60 IF (ABS(IX).GT.KMAX) GO TO 40
70 RETURN
END
|