1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
CS REAL FUNCTION GAMMA(X)
DOUBLE PRECISION FUNCTION DGAMMACODY(X)
C----------------------------------------------------------------------
C
C This routine calculates the GAMMA function for a real argument X.
C Computation is based on an algorithm outlined in reference 1.
C The program uses rational functions that approximate the GAMMA
C function to at least 20 significant decimal digits. Coefficients
C for the approximation over the interval (1,2) are unpublished.
C Those for the approximation for X .GE. 12 are from reference 2.
C The accuracy achieved depends on the arithmetic system, the
C compiler, the intrinsic functions, and proper selection of the
C machine-dependent constants.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta - radix for the floating-point representation
C maxexp - the smallest positive power of beta that overflows
C XBIG - the largest argument for which GAMMA(X) is representable
C in the machine, i.e., the solution to the equation
C GAMMA(XBIG) = beta**maxexp
C XINF - the largest machine representable floating-point number;
C approximately beta**maxexp
C EPS - the smallest positive floating-point number such that
C 1.0+EPS .GT. 1.0
C XMININ - the smallest positive floating-point number such that
C 1/XMININ is machine representable
C
C Approximate values for some important machines are:
C
C beta maxexp XBIG
C
C CRAY-1 (S.P.) 2 8191 966.961
C Cyber 180/855
C under NOS (S.P.) 2 1070 177.803
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 2 128 35.040
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 2 1024 171.624
C IBM 3033 (D.P.) 16 63 57.574
C VAX D-Format (D.P.) 2 127 34.844
C VAX G-Format (D.P.) 2 1023 171.489
C
C XINF EPS XMININ
C
C CRAY-1 (S.P.) 5.45E+2465 7.11E-15 1.84E-2466
C Cyber 180/855
C under NOS (S.P.) 1.26E+322 3.55E-15 3.14E-294
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 3.40E+38 1.19E-7 1.18E-38
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 1.79D+308 2.22D-16 2.23D-308
C IBM 3033 (D.P.) 7.23D+75 2.22D-16 1.39D-76
C VAX D-Format (D.P.) 1.70D+38 1.39D-17 5.88D-39
C VAX G-Format (D.P.) 8.98D+307 1.11D-16 1.12D-308
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C The program returns the value XINF for singularities or
C when overflow would occur. The computation is believed
C to be free of underflow and overflow.
C
C
C Intrinsic functions required are:
C
C INT, DBLE, EXP, LOG, REAL, SIN
C
C
C References: "An Overview of Software Development for Special
C Functions", W. J. Cody, Lecture Notes in Mathematics,
C 506, Numerical Analysis Dundee, 1975, G. A. Watson
C (ed.), Springer Verlag, Berlin, 1976.
C
C Computer Approximations, Hart, Et. Al., Wiley and
C sons, New York, 1968.
C
C Latest modification: October 12, 1989
C
C Authors: W. J. Cody and L. Stoltz
C Applied Mathematics Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C----------------------------------------------------------------------
*
* A few modifs from Bruno (25 Feb 2005) from a Serge 's request:
*
* - change the name of this function (DGAMMA -> DGAMMACODY) to avoid conflict with
* the gamma Slatec (file dgamma.f). (in fact thare was no conflict as this
* function was retrieved in the makefile...)
*
* - modify to get "better" values in some cases:
*
* 1/ when x is small we used more completly the equivalent gamma(x) ~ 1/x
* (the original code uses it only if XMININ <= x < eps)
* this lets to get +-Inf for x = +-0
* 2/ when x is a negative integer return Nan (in place of XINF)
* 3/ when the gamma overflow return Inf (in place of XINF)
* Serge asks me to change this in the Slatec gamma function but I try
* first to do it in the Cody 's gamma... In fact to do a real job an
* exception may be returned (with an integer flag say IERR) in theses
* cases so as to prevent the user depending on the ieee scilab var.
*
INTEGER I,N
LOGICAL PARITY
CS REAL
DOUBLE PRECISION
1 C,CONV,EPS,FACT,HALF,ONE,P,PI,Q,RES,SQRTPI,SUM,TWELVE,
2 TWO,X,XBIG,XDEN,XINF,XMININ,XNUM,Y,Y1,YSQ,Z,ZERO
DIMENSION C(7),P(8),Q(8)
C----------------------------------------------------------------------
C Mathematical constants
C----------------------------------------------------------------------
CS DATA ONE,HALF,TWELVE,TWO,ZERO/1.0E0,0.5E0,12.0E0,2.0E0,0.0E0/,
CS 1 SQRTPI/0.9189385332046727417803297E0/,
CS 2 PI/3.1415926535897932384626434E0/
DATA ONE,HALF,TWELVE,TWO,ZERO/1.0D0,0.5D0,12.0D0,2.0D0,0.0D0/,
1 SQRTPI/0.9189385332046727417803297D0/,
2 PI/3.1415926535897932384626434D0/
C----------------------------------------------------------------------
C Machine dependent parameters
C----------------------------------------------------------------------
CS DATA XBIG,XMININ,EPS/35.040E0,1.18E-38,1.19E-7/,
CS 1 XINF/3.4E38/
DATA XBIG,XMININ,EPS/171.624D0,2.23D-308,2.22D-16/,
1 XINF/1.79D308/
C----------------------------------------------------------------------
C Numerator and denominator coefficients for rational minimax
C approximation over (1,2).
C----------------------------------------------------------------------
CS DATA P/-1.71618513886549492533811E+0,2.47656508055759199108314E+1,
CS 1 -3.79804256470945635097577E+2,6.29331155312818442661052E+2,
CS 2 8.66966202790413211295064E+2,-3.14512729688483675254357E+4,
CS 3 -3.61444134186911729807069E+4,6.64561438202405440627855E+4/
CS DATA Q/-3.08402300119738975254353E+1,3.15350626979604161529144E+2,
CS 1 -1.01515636749021914166146E+3,-3.10777167157231109440444E+3,
CS 2 2.25381184209801510330112E+4,4.75584627752788110767815E+3,
CS 3 -1.34659959864969306392456E+5,-1.15132259675553483497211E+5/
DATA P/-1.71618513886549492533811D+0,2.47656508055759199108314D+1,
1 -3.79804256470945635097577D+2,6.29331155312818442661052D+2,
2 8.66966202790413211295064D+2,-3.14512729688483675254357D+4,
3 -3.61444134186911729807069D+4,6.64561438202405440627855D+4/
DATA Q/-3.08402300119738975254353D+1,3.15350626979604161529144D+2,
1 -1.01515636749021914166146D+3,-3.10777167157231109440444D+3,
2 2.25381184209801510330112D+4,4.75584627752788110767815D+3,
3 -1.34659959864969306392456D+5,-1.15132259675553483497211D+5/
C----------------------------------------------------------------------
C Coefficients for minimax approximation over (12, INF).
C----------------------------------------------------------------------
CS DATA C/-1.910444077728E-03,8.4171387781295E-04,
CS 1 -5.952379913043012E-04,7.93650793500350248E-04,
CS 2 -2.777777777777681622553E-03,8.333333333333333331554247E-02,
CS 3 5.7083835261E-03/
DATA C/-1.910444077728D-03,8.4171387781295D-04,
1 -5.952379913043012D-04,7.93650793500350248D-04,
2 -2.777777777777681622553D-03,8.333333333333333331554247D-02,
3 5.7083835261D-03/
C----------------------------------------------------------------------
C Statement functions for conversion between integer and float
C----------------------------------------------------------------------
CS CONV(I) = REAL(I)
CONV(I) = DBLE(I)
PARITY = .FALSE.
FACT = ONE
N = 0
Y = X
if (abs(Y) .LT. EPS) then
* argument is enough small (to use the equivalent 1/x)
RES = ONE / Y
goto 900
ELSE IF (Y .LE. ZERO) THEN
C----------------------------------------------------------------------
C Argument is negative
C----------------------------------------------------------------------
Y = -X
Y1 = AINT(Y)
RES = Y - Y1
IF (RES .NE. ZERO) THEN
IF (Y1 .NE. AINT(Y1*HALF)*TWO) PARITY = .TRUE.
FACT = -PI / SIN(PI*RES)
Y = Y + ONE
ELSE
* RES = XINF
* modif Bruno: return Nan (Y is a negative integer)
RES = return_a_nan() ! this one is defined in somespline.f
GO TO 900
END IF
END IF
C----------------------------------------------------------------------
C Argument is positive
C----------------------------------------------------------------------
IF (Y .LT. EPS) THEN
C----------------------------------------------------------------------
C Argument .LT. EPS
C----------------------------------------------------------------------
* IF (Y .GE. XMININ) THEN
RES = ONE / Y
* ELSE
* RES = XINF
* GO TO 900
* END IF
ELSE IF (Y .LT. TWELVE) THEN
Y1 = Y
IF (Y .LT. ONE) THEN
C----------------------------------------------------------------------
C 0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
Z = Y
Y = Y + ONE
ELSE
C----------------------------------------------------------------------
C 1.0 .LT. argument .LT. 12.0, reduce argument if necessary
C----------------------------------------------------------------------
N = INT(Y) - 1
Y = Y - CONV(N)
Z = Y - ONE
END IF
C----------------------------------------------------------------------
C Evaluate approximation for 1.0 .LT. argument .LT. 2.0
C----------------------------------------------------------------------
XNUM = ZERO
XDEN = ONE
DO 260 I = 1, 8
XNUM = (XNUM + P(I)) * Z
XDEN = XDEN * Z + Q(I)
260 CONTINUE
RES = XNUM / XDEN + ONE
IF (Y1 .LT. Y) THEN
C----------------------------------------------------------------------
C Adjust result for case 0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
RES = RES / Y1
ELSE IF (Y1 .GT. Y) THEN
C----------------------------------------------------------------------
C Adjust result for case 2.0 .LT. argument .LT. 12.0
C----------------------------------------------------------------------
DO 290 I = 1, N
RES = RES * Y
Y = Y + ONE
290 CONTINUE
END IF
ELSE
C----------------------------------------------------------------------
C Evaluate for argument .GE. 12.0,
C----------------------------------------------------------------------
IF (Y .LE. XBIG) THEN
YSQ = Y * Y
SUM = C(7)
DO 350 I = 1, 6
SUM = SUM / YSQ + C(I)
350 CONTINUE
SUM = SUM/Y - Y + SQRTPI
SUM = SUM + (Y-HALF)*LOG(Y)
RES = EXP(SUM)
ELSE
* RES = XINF
* modif bruno : return an Inf
RES = 2*XINF
* end modif bruno
GO TO 900
END IF
END IF
C----------------------------------------------------------------------
C Final adjustments and return
C----------------------------------------------------------------------
IF (PARITY) RES = -RES
IF (FACT .NE. ONE) RES = FACT / RES
CS900 GAMMA = RES
900 DGAMMACODY = RES
RETURN
C ---------- Last line of GAMMA ----------
END
|