File: gamma.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (281 lines) | stat: -rw-r--r-- 11,942 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
CS    REAL FUNCTION GAMMA(X)
      DOUBLE PRECISION FUNCTION DGAMMACODY(X)
C----------------------------------------------------------------------
C
C This routine calculates the GAMMA function for a real argument X.
C   Computation is based on an algorithm outlined in reference 1.
C   The program uses rational functions that approximate the GAMMA
C   function to at least 20 significant decimal digits.  Coefficients
C   for the approximation over the interval (1,2) are unpublished.
C   Those for the approximation for X .GE. 12 are from reference 2.
C   The accuracy achieved depends on the arithmetic system, the
C   compiler, the intrinsic functions, and proper selection of the
C   machine-dependent constants.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta   - radix for the floating-point representation
C maxexp - the smallest positive power of beta that overflows
C XBIG   - the largest argument for which GAMMA(X) is representable
C          in the machine, i.e., the solution to the equation
C                  GAMMA(XBIG) = beta**maxexp
C XINF   - the largest machine representable floating-point number;
C          approximately beta**maxexp
C EPS    - the smallest positive floating-point number such that
C          1.0+EPS .GT. 1.0
C XMININ - the smallest positive floating-point number such that
C          1/XMININ is machine representable
C
C     Approximate values for some important machines are:
C
C                            beta       maxexp        XBIG
C
C CRAY-1         (S.P.)        2         8191        966.961
C Cyber 180/855
C   under NOS    (S.P.)        2         1070        177.803
C IEEE (IBM/XT,
C   SUN, etc.)   (S.P.)        2          128        35.040
C IEEE (IBM/XT,
C   SUN, etc.)   (D.P.)        2         1024        171.624
C IBM 3033       (D.P.)       16           63        57.574
C VAX D-Format   (D.P.)        2          127        34.844
C VAX G-Format   (D.P.)        2         1023        171.489
C
C                            XINF         EPS        XMININ
C
C CRAY-1         (S.P.)   5.45E+2465   7.11E-15    1.84E-2466
C Cyber 180/855
C   under NOS    (S.P.)   1.26E+322    3.55E-15    3.14E-294
C IEEE (IBM/XT,
C   SUN, etc.)   (S.P.)   3.40E+38     1.19E-7     1.18E-38
C IEEE (IBM/XT,
C   SUN, etc.)   (D.P.)   1.79D+308    2.22D-16    2.23D-308
C IBM 3033       (D.P.)   7.23D+75     2.22D-16    1.39D-76
C VAX D-Format   (D.P.)   1.70D+38     1.39D-17    5.88D-39
C VAX G-Format   (D.P.)   8.98D+307    1.11D-16    1.12D-308
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C  The program returns the value XINF for singularities or
C     when overflow would occur.  The computation is believed
C     to be free of underflow and overflow.
C
C
C  Intrinsic functions required are:
C
C     INT, DBLE, EXP, LOG, REAL, SIN
C
C
C References: "An Overview of Software Development for Special
C              Functions", W. J. Cody, Lecture Notes in Mathematics,
C              506, Numerical Analysis Dundee, 1975, G. A. Watson
C              (ed.), Springer Verlag, Berlin, 1976.
C
C              Computer Approximations, Hart, Et. Al., Wiley and
C              sons, New York, 1968.
C
C  Latest modification: October 12, 1989
C
C  Authors: W. J. Cody and L. Stoltz
C           Applied Mathematics Division
C           Argonne National Laboratory
C           Argonne, IL 60439
C
C----------------------------------------------------------------------
*
*  A few modifs from Bruno (25 Feb 2005) from a Serge 's request:
*
*     - change the name of this function (DGAMMA ->  DGAMMACODY) to avoid conflict with 
*       the gamma Slatec (file dgamma.f). (in fact thare was no conflict as this
*       function was retrieved in the makefile...)
*    
*     - modify to get "better" values in some cases:
*
*         1/ when x is small we used more completly the equivalent gamma(x) ~ 1/x
*            (the original code uses it only if XMININ <= x < eps)
*            this lets to get  +-Inf for x = +-0
*         2/ when x is a negative integer return Nan (in place of XINF)
*         3/ when the gamma overflow return Inf (in place of XINF)
*       Serge asks me to change this in the Slatec gamma function but I try
*       first to do it in the Cody 's gamma... In fact to do a real job an
*       exception may be returned (with an integer flag say IERR) in theses
*       cases so as to prevent the user depending on the ieee scilab var.
*
      INTEGER I,N
      LOGICAL PARITY
CS    REAL 
      DOUBLE PRECISION 
     1    C,CONV,EPS,FACT,HALF,ONE,P,PI,Q,RES,SQRTPI,SUM,TWELVE,
     2    TWO,X,XBIG,XDEN,XINF,XMININ,XNUM,Y,Y1,YSQ,Z,ZERO
      DIMENSION C(7),P(8),Q(8)
C----------------------------------------------------------------------
C  Mathematical constants
C----------------------------------------------------------------------
CS    DATA ONE,HALF,TWELVE,TWO,ZERO/1.0E0,0.5E0,12.0E0,2.0E0,0.0E0/,
CS   1     SQRTPI/0.9189385332046727417803297E0/,
CS   2     PI/3.1415926535897932384626434E0/
      DATA ONE,HALF,TWELVE,TWO,ZERO/1.0D0,0.5D0,12.0D0,2.0D0,0.0D0/,
     1     SQRTPI/0.9189385332046727417803297D0/,
     2     PI/3.1415926535897932384626434D0/
C----------------------------------------------------------------------
C  Machine dependent parameters
C----------------------------------------------------------------------
CS    DATA XBIG,XMININ,EPS/35.040E0,1.18E-38,1.19E-7/,
CS   1     XINF/3.4E38/
      DATA XBIG,XMININ,EPS/171.624D0,2.23D-308,2.22D-16/,
     1     XINF/1.79D308/
C----------------------------------------------------------------------
C  Numerator and denominator coefficients for rational minimax
C     approximation over (1,2).
C----------------------------------------------------------------------
CS    DATA P/-1.71618513886549492533811E+0,2.47656508055759199108314E+1,
CS   1       -3.79804256470945635097577E+2,6.29331155312818442661052E+2,
CS   2       8.66966202790413211295064E+2,-3.14512729688483675254357E+4,
CS   3       -3.61444134186911729807069E+4,6.64561438202405440627855E+4/
CS    DATA Q/-3.08402300119738975254353E+1,3.15350626979604161529144E+2,
CS   1      -1.01515636749021914166146E+3,-3.10777167157231109440444E+3,
CS   2        2.25381184209801510330112E+4,4.75584627752788110767815E+3,
CS   3      -1.34659959864969306392456E+5,-1.15132259675553483497211E+5/
      DATA P/-1.71618513886549492533811D+0,2.47656508055759199108314D+1,
     1       -3.79804256470945635097577D+2,6.29331155312818442661052D+2,
     2       8.66966202790413211295064D+2,-3.14512729688483675254357D+4,
     3       -3.61444134186911729807069D+4,6.64561438202405440627855D+4/
      DATA Q/-3.08402300119738975254353D+1,3.15350626979604161529144D+2,
     1      -1.01515636749021914166146D+3,-3.10777167157231109440444D+3,
     2        2.25381184209801510330112D+4,4.75584627752788110767815D+3,
     3      -1.34659959864969306392456D+5,-1.15132259675553483497211D+5/
C----------------------------------------------------------------------
C  Coefficients for minimax approximation over (12, INF).
C----------------------------------------------------------------------
CS    DATA C/-1.910444077728E-03,8.4171387781295E-04,
CS   1     -5.952379913043012E-04,7.93650793500350248E-04,
CS   2     -2.777777777777681622553E-03,8.333333333333333331554247E-02,
CS   3      5.7083835261E-03/
      DATA C/-1.910444077728D-03,8.4171387781295D-04,
     1     -5.952379913043012D-04,7.93650793500350248D-04,
     2     -2.777777777777681622553D-03,8.333333333333333331554247D-02,
     3      5.7083835261D-03/
C----------------------------------------------------------------------
C  Statement functions for conversion between integer and float
C----------------------------------------------------------------------
CS    CONV(I) = REAL(I)
      CONV(I) = DBLE(I)
      PARITY = .FALSE.
      FACT = ONE
      N = 0
      Y = X

      if (abs(Y) .LT. EPS) then
*        argument is enough small (to use the equivalent 1/x)
         RES = ONE / Y
         goto 900
 
      ELSE IF (Y .LE. ZERO) THEN
C----------------------------------------------------------------------
C  Argument is negative
C----------------------------------------------------------------------
         Y = -X
         Y1 = AINT(Y)
         RES = Y - Y1
         IF (RES .NE. ZERO) THEN
            IF (Y1 .NE. AINT(Y1*HALF)*TWO) PARITY = .TRUE.
            FACT = -PI / SIN(PI*RES)
            Y = Y + ONE
         ELSE
*          RES = XINF
* modif Bruno: return Nan (Y is a negative integer)
            RES = return_a_nan() ! this one is defined in somespline.f
            GO TO 900
         END IF
      END IF
C----------------------------------------------------------------------
C  Argument is positive
C----------------------------------------------------------------------
      IF (Y .LT. EPS) THEN
C----------------------------------------------------------------------
C  Argument .LT. EPS
C----------------------------------------------------------------------
*         IF (Y .GE. XMININ) THEN
         RES = ONE / Y
*         ELSE
*            RES = XINF
*            GO TO 900
*         END IF
      ELSE IF (Y .LT. TWELVE) THEN
         Y1 = Y
         IF (Y .LT. ONE) THEN
C----------------------------------------------------------------------
C  0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
            Z = Y
            Y = Y + ONE
         ELSE
C----------------------------------------------------------------------
C  1.0 .LT. argument .LT. 12.0, reduce argument if necessary
C----------------------------------------------------------------------
            N = INT(Y) - 1
            Y = Y - CONV(N)
            Z = Y - ONE
         END IF
C----------------------------------------------------------------------
C  Evaluate approximation for 1.0 .LT. argument .LT. 2.0
C----------------------------------------------------------------------
         XNUM = ZERO
         XDEN = ONE
         DO 260 I = 1, 8
            XNUM = (XNUM + P(I)) * Z
            XDEN = XDEN * Z + Q(I)
 260     CONTINUE
         RES = XNUM / XDEN + ONE
         IF (Y1 .LT. Y) THEN
C----------------------------------------------------------------------
C  Adjust result for case  0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
            RES = RES / Y1
         ELSE IF (Y1 .GT. Y) THEN
C----------------------------------------------------------------------
C  Adjust result for case  2.0 .LT. argument .LT. 12.0
C----------------------------------------------------------------------
            DO 290 I = 1, N
               RES = RES * Y
               Y = Y + ONE
 290        CONTINUE
         END IF
      ELSE
C----------------------------------------------------------------------
C  Evaluate for argument .GE. 12.0,
C----------------------------------------------------------------------
         IF (Y .LE. XBIG) THEN
            YSQ = Y * Y
            SUM = C(7)
            DO 350 I = 1, 6
               SUM = SUM / YSQ + C(I)
 350        CONTINUE
            SUM = SUM/Y - Y + SQRTPI
            SUM = SUM + (Y-HALF)*LOG(Y)
            RES = EXP(SUM)
         ELSE
*                  RES = XINF
* modif bruno : return an Inf
            RES = 2*XINF
* end modif bruno
            GO TO 900
         END IF
      END IF
C----------------------------------------------------------------------
C  Final adjustments and return
C----------------------------------------------------------------------
      IF (PARITY) RES = -RES
      IF (FACT .NE. ONE) RES = FACT / RES
CS900 GAMMA = RES
  900 DGAMMACODY = RES
      RETURN
C ---------- Last line of GAMMA ----------
      END