1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
SUBROUTINE RIBESL(X,ALPHA,NB,IZE,B,NCALC)
C-------------------------------------------------------------------
C
C This routine calculates Bessel functions I SUB(N+ALPHA) (X)
C for non-negative argument X, and non-negative order N+ALPHA,
C with or without exponential scaling.
C
C
C Explanation of variables in the calling sequence
C
C X - Working precision non-negative real argument for which
C I's or exponentially scaled I's (I*EXP(-X))
C are to be calculated. If I's are to be calculated,
C X must be less than EXPARG (see below).
C ALPHA - Working precision fractional part of order for which
C I's or exponentially scaled I's (I*EXP(-X)) are
C to be calculated. 0 .LE. ALPHA .LT. 1.0.
C NB - Integer number of functions to be calculated, NB .GT. 0.
C The first function calculated is of order ALPHA, and the
C last is of order (NB - 1 + ALPHA).
C IZE - Integer type. IZE = 1 if unscaled I's are to calculated,
C and 2 if exponentially scaled I's are to be calculated.
C B - Working precision output vector of length NB. If the routine
C terminates normally (NCALC=NB), the vector B contains the
C functions I(ALPHA,X) through I(NB-1+ALPHA,X), or the
C corresponding exponentially scaled functions.
C NCALC - Integer output variable indicating possible errors.
C Before using the vector B, the user should check that
C NCALC=NB, i.e., all orders have been calculated to
C the desired accuracy. See error returns below.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta = Radix for the floating-point system
C minexp = Smallest representable power of beta
C maxexp = Smallest power of beta that overflows
C it = Number of bits in the mantissa of a working precision
C variable
C NSIG = Decimal significance desired. Should be set to
C INT(LOG10(2)*it+1). Setting NSIG lower will result
C in decreased accuracy while setting NSIG higher will
C increase CPU time without increasing accuracy. The
C truncation error is limited to a relative error of
C T=.5*10**(-NSIG).
C ENTEN = 10.0 ** K, where K is the largest integer such that
C ENTEN is machine-representable in working precision
C ENSIG = 10.0 ** NSIG
C RTNSIG = 10.0 ** (-K) for the smallest integer K such that
C K .GE. NSIG/4
C ENMTEN = Smallest ABS(X) such that X/4 does not underflow
C XLARGE = Upper limit on the magnitude of X when IZE=2. Bear
C in mind that if ABS(X)=N, then at least N iterations
C of the backward recursion will be executed. The value
C of 10.0 ** 4 is used on every machine.
C EXPARG = Largest working precision argument that the library
C EXP routine can handle and upper limit on the
C magnitude of X when IZE=1; approximately
C LOG(beta**maxexp)
C
C
C Approximate values for some important machines are:
C
C beta minexp maxexp it
C
C CRAY-1 (S.P.) 2 -8193 8191 48
C Cyber 180/855
C under NOS (S.P.) 2 -975 1070 48
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 2 -126 128 24
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 2 -1022 1024 53
C IBM 3033 (D.P.) 16 -65 63 14
C VAX (S.P.) 2 -128 127 24
C VAX D-Format (D.P.) 2 -128 127 56
C VAX G-Format (D.P.) 2 -1024 1023 53
C
C
C NSIG ENTEN ENSIG RTNSIG
C
C CRAY-1 (S.P.) 15 1.0E+2465 1.0E+15 1.0E-4
C Cyber 180/855
C under NOS (S.P.) 15 1.0E+322 1.0E+15 1.0E-4
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 8 1.0E+38 1.0E+8 1.0E-2
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 16 1.0D+308 1.0D+16 1.0D-4
C IBM 3033 (D.P.) 5 1.0D+75 1.0D+5 1.0D-2
C VAX (S.P.) 8 1.0E+38 1.0E+8 1.0E-2
C VAX D-Format (D.P.) 17 1.0D+38 1.0D+17 1.0D-5
C VAX G-Format (D.P.) 16 1.0D+307 1.0D+16 1.0D-4
C
C
C ENMTEN XLARGE EXPARG
C
C CRAY-1 (S.P.) 1.84E-2466 1.0E+4 5677
C Cyber 180/855
C under NOS (S.P.) 1.25E-293 1.0E+4 741
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 4.70E-38 1.0E+4 88
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 8.90D-308 1.0D+4 709
C IBM 3033 (D.P.) 2.16D-78 1.0D+4 174
C VAX (S.P.) 1.17E-38 1.0E+4 88
C VAX D-Format (D.P.) 1.17D-38 1.0D+4 88
C VAX G-Format (D.P.) 2.22D-308 1.0D+4 709
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C In case of an error, NCALC .NE. NB, and not all I's are
C calculated to the desired accuracy.
C
C NCALC .LT. 0: An argument is out of range. For example,
C NB .LE. 0, IZE is not 1 or 2, or IZE=1 and ABS(X) .GE. EXPARG.
C In this case, the B-vector is not calculated, and NCALC is
C set to MIN0(NB,0)-1 so that NCALC .NE. NB.
C
C NB .GT. NCALC .GT. 0: Not all requested function values could
C be calculated accurately. This usually occurs because NB is
C much larger than ABS(X). In this case, B(N) is calculated
C to the desired accuracy for N .LE. NCALC, but precision
C is lost for NCALC .LT. N .LE. NB. If B(N) does not vanish
C for N .GT. NCALC (because it is too small to be represented),
C and B(N)/B(NCALC) = 10**(-K), then only the first NSIG-K
C significant figures of B(N) can be trusted.
C
C
C Intrinsic functions required are:
C
C DBLE, EXP, DGAMMA, GAMMA, INT, MAX, MIN, REAL, SQRT
C
C
C Acknowledgement
C
C This program is based on a program written by David J.
C Sookne (2) that computes values of the Bessel functions J or
C I of real argument and integer order. Modifications include
C the restriction of the computation to the I Bessel function
C of non-negative real argument, the extension of the computation
C to arbitrary positive order, the inclusion of optional
C exponential scaling, and the elimination of most underflow.
C An earlier version was published in (3).
C
C References: "A Note on Backward Recurrence Algorithms," Olver,
C F. W. J., and Sookne, D. J., Math. Comp. 26, 1972,
C pp 941-947.
C
C "Bessel Functions of Real Argument and Integer Order,"
C Sookne, D. J., NBS Jour. of Res. B. 77B, 1973, pp
C 125-132.
C
C "ALGORITHM 597, Sequence of Modified Bessel Functions
C of the First Kind," Cody, W. J., Trans. Math. Soft.,
C 1983, pp. 242-245.
C
C Latest modification: May 30, 1989
C
C Modified by: W. J. Cody and L. Stoltz
C Applied Mathematics Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C-------------------------------------------------------------------
INTEGER IZE,K,L,MAGX,N,NB,NBMX,NCALC,NEND,NSIG,NSTART
CS REAL GAMMA,
DOUBLE PRECISION DGAMMA,
1 ALPHA,B,CONST,CONV,EM,EMPAL,EMP2AL,EN,ENMTEN,ENSIG,
2 ENTEN,EXPARG,FUNC,HALF,HALFX,ONE,P,PLAST,POLD,PSAVE,PSAVEL,
3 RTNSIG,SUM,TEMPA,TEMPB,TEMPC,TEST,TOVER,TWO,X,XLARGE,ZERO
DIMENSION B(NB)
C-------------------------------------------------------------------
C Mathematical constants
C-------------------------------------------------------------------
CS DATA ONE,TWO,ZERO,HALF,CONST/1.0E0,2.0E0,0.0E0,0.5E0,1.585E0/
DATA ONE,TWO,ZERO,HALF,CONST/1.0D0,2.0D0,0.0D0,0.5D0,1.585D0/
C-------------------------------------------------------------------
C Machine-dependent parameters
C-------------------------------------------------------------------
CS DATA NSIG,XLARGE,EXPARG /8,1.0E4,88.0E0/
CS DATA ENTEN,ENSIG,RTNSIG/1.0E38,1.0E8,1.0E-2/
CS DATA ENMTEN/4.7E-38/
DATA NSIG,XLARGE,EXPARG /16,1.0D4,709.0D0/
DATA ENTEN,ENSIG,RTNSIG/1.0D308,1.0D16,1.0D-4/
DATA ENMTEN/8.9D-308/
C-------------------------------------------------------------------
C Statement functions for conversion
C-------------------------------------------------------------------
CS CONV(N) = REAL(N)
CS FUNC(X) = GAMMA(X)
CONV(N) = DBLE(N)
FUNC(X) = DGAMMA(X)
C-------------------------------------------------------------------
C Check for X, NB, OR IZE out of range.
C-------------------------------------------------------------------
IF ((NB.GT.0) .AND. (X .GE. ZERO) .AND.
1 (ALPHA .GE. ZERO) .AND. (ALPHA .LT. ONE) .AND.
2 (((IZE .EQ. 1) .AND. (X .LE. EXPARG)) .OR.
3 ((IZE .EQ. 2) .AND. (X .LE. XLARGE)))) THEN
C-------------------------------------------------------------------
C Use 2-term ascending series for small X
C-------------------------------------------------------------------
NCALC = NB
MAGX = INT(X)
IF (X .GE. RTNSIG) THEN
C-------------------------------------------------------------------
C Initialize the forward sweep, the P-sequence of Olver
C-------------------------------------------------------------------
NBMX = NB-MAGX
N = MAGX+1
EN = CONV(N+N) + (ALPHA+ALPHA)
PLAST = ONE
P = EN / X
C-------------------------------------------------------------------
C Calculate general significance test
C-------------------------------------------------------------------
TEST = ENSIG + ENSIG
IF (2*MAGX .GT. 5*NSIG) THEN
TEST = SQRT(TEST*P)
ELSE
TEST = TEST / CONST**MAGX
END IF
IF (NBMX .GE. 3) THEN
C-------------------------------------------------------------------
C Calculate P-sequence until N = NB-1. Check for possible overflow.
C-------------------------------------------------------------------
TOVER = ENTEN / ENSIG
NSTART = MAGX+2
NEND = NB - 1
DO 100 K = NSTART, NEND
N = K
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN * PLAST/X + POLD
IF (P .GT. TOVER) THEN
C-------------------------------------------------------------------
C To avoid overflow, divide P-sequence by TOVER. Calculate
C P-sequence until ABS(P) .GT. 1.
C-------------------------------------------------------------------
TOVER = ENTEN
P = P / TOVER
PLAST = PLAST / TOVER
PSAVE = P
PSAVEL = PLAST
NSTART = N + 1
60 N = N + 1
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN * PLAST/X + POLD
IF (P .LE. ONE) GO TO 60
TEMPB = EN / X
C-------------------------------------------------------------------
C Calculate backward test, and find NCALC, the highest N
C such that the test is passed.
C-------------------------------------------------------------------
TEST = POLD*PLAST / ENSIG
TEST = TEST*(HALF-HALF/(TEMPB*TEMPB))
P = PLAST * TOVER
N = N - 1
EN = EN - TWO
NEND = MIN0(NB,N)
DO 80 L = NSTART, NEND
NCALC = L
POLD = PSAVEL
PSAVEL = PSAVE
PSAVE = EN * PSAVEL/X + POLD
IF (PSAVE*PSAVEL .GT. TEST) GO TO 90
80 CONTINUE
NCALC = NEND + 1
90 NCALC = NCALC - 1
GO TO 120
END IF
100 CONTINUE
N = NEND
EN = CONV(N+N) + (ALPHA+ALPHA)
C-------------------------------------------------------------------
C Calculate special significance test for NBMX .GT. 2.
C-------------------------------------------------------------------
TEST = MAX(TEST,SQRT(PLAST*ENSIG)*SQRT(P+P))
END IF
C-------------------------------------------------------------------
C Calculate P-sequence until significance test passed.
C-------------------------------------------------------------------
110 N = N + 1
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN * PLAST/X + POLD
IF (P .LT. TEST) GO TO 110
C-------------------------------------------------------------------
C Initialize the backward recursion and the normalization sum.
C-------------------------------------------------------------------
120 N = N + 1
EN = EN + TWO
TEMPB = ZERO
TEMPA = ONE / P
EM = CONV(N) - ONE
EMPAL = EM + ALPHA
EMP2AL = (EM - ONE) + (ALPHA + ALPHA)
SUM = TEMPA * EMPAL * EMP2AL / EM
NEND = N - NB
IF (NEND .LT. 0) THEN
C-------------------------------------------------------------------
C N .LT. NB, so store B(N) and set higher orders to zero.
C-------------------------------------------------------------------
B(N) = TEMPA
NEND = -NEND
DO 130 L = 1, NEND
130 B(N+L) = ZERO
ELSE
IF (NEND .GT. 0) THEN
C-------------------------------------------------------------------
C Recur backward via difference equation, calculating (but
C not storing) B(N), until N = NB.
C-------------------------------------------------------------------
DO 140 L = 1, NEND
N = N - 1
EN = EN - TWO
TEMPC = TEMPB
TEMPB = TEMPA
TEMPA = (EN*TEMPB) / X + TEMPC
EM = EM - ONE
EMP2AL = EMP2AL - ONE
IF (N .EQ. 1) GO TO 150
IF (N .EQ. 2) EMP2AL = ONE
EMPAL = EMPAL - ONE
SUM = (SUM + TEMPA*EMPAL) * EMP2AL / EM
140 CONTINUE
END IF
C-------------------------------------------------------------------
C Store B(NB)
C-------------------------------------------------------------------
150 B(N) = TEMPA
IF (NB .LE. 1) THEN
SUM = (SUM + SUM) + TEMPA
GO TO 230
END IF
C-------------------------------------------------------------------
C Calculate and Store B(NB-1)
C-------------------------------------------------------------------
N = N - 1
EN = EN - TWO
B(N) = (EN*TEMPA) / X + TEMPB
IF (N .EQ. 1) GO TO 220
EM = EM - ONE
EMP2AL = EMP2AL - ONE
IF (N .EQ. 2) EMP2AL = ONE
EMPAL = EMPAL - ONE
SUM = (SUM + B(N)*EMPAL) * EMP2AL / EM
END IF
NEND = N - 2
IF (NEND .GT. 0) THEN
C-------------------------------------------------------------------
C Calculate via difference equation and store B(N), until N = 2.
C-------------------------------------------------------------------
DO 200 L = 1, NEND
N = N - 1
EN = EN - TWO
B(N) = (EN*B(N+1)) / X +B(N+2)
EM = EM - ONE
EMP2AL = EMP2AL - ONE
IF (N .EQ. 2) EMP2AL = ONE
EMPAL = EMPAL - ONE
SUM = (SUM + B(N)*EMPAL) * EMP2AL / EM
200 CONTINUE
END IF
C-------------------------------------------------------------------
C Calculate B(1)
C-------------------------------------------------------------------
B(1) = TWO*EMPAL*B(2) / X + B(3)
220 SUM = (SUM + SUM) + B(1)
C-------------------------------------------------------------------
C Normalize. Divide all B(N) by sum.
C-------------------------------------------------------------------
230 IF (ALPHA .NE. ZERO)
1 SUM = SUM * FUNC(ONE+ALPHA) * (X*HALF)**(-ALPHA)
IF (IZE .EQ. 1) SUM = SUM * EXP(-X)
TEMPA = ENMTEN
IF (SUM .GT. ONE) TEMPA = TEMPA * SUM
DO 260 N = 1, NB
IF (B(N) .LT. TEMPA) B(N) = ZERO
B(N) = B(N) / SUM
260 CONTINUE
RETURN
C-------------------------------------------------------------------
C Two-term ascending series for small X.
C-------------------------------------------------------------------
ELSE
TEMPA = ONE
EMPAL = ONE + ALPHA
HALFX = ZERO
IF (X .GT. ENMTEN) HALFX = HALF * X
IF (ALPHA .NE. ZERO) TEMPA = HALFX**ALPHA /FUNC(EMPAL)
IF (IZE .EQ. 2) TEMPA = TEMPA * EXP(-X)
TEMPB = ZERO
IF ((X+ONE) .GT. ONE) TEMPB = HALFX * HALFX
B(1) = TEMPA + TEMPA*TEMPB / EMPAL
IF ((X .NE. ZERO) .AND. (B(1) .EQ. ZERO)) NCALC = 0
IF (NB .GT. 1) THEN
IF (X .EQ. ZERO) THEN
DO 310 N = 2, NB
B(N) = ZERO
310 CONTINUE
ELSE
C-------------------------------------------------------------------
C Calculate higher-order functions.
C-------------------------------------------------------------------
TEMPC = HALFX
TOVER = (ENMTEN + ENMTEN) / X
IF (TEMPB .NE. ZERO) TOVER = ENMTEN / TEMPB
DO 340 N = 2, NB
TEMPA = TEMPA / EMPAL
EMPAL = EMPAL + ONE
TEMPA = TEMPA * TEMPC
IF (TEMPA .LE. TOVER*EMPAL) TEMPA = ZERO
B(N) = TEMPA + TEMPA*TEMPB / EMPAL
IF ((B(N) .EQ. ZERO) .AND. (NCALC .GT. N))
1 NCALC = N-1
340 CONTINUE
END IF
END IF
END IF
ELSE
NCALC = MIN0(NB,0)-1
END IF
RETURN
C---------- Last line of RIBESL ----------
END
|