File: ribesl.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (436 lines) | stat: -rw-r--r-- 19,841 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
      SUBROUTINE RIBESL(X,ALPHA,NB,IZE,B,NCALC)
C-------------------------------------------------------------------
C
C  This routine calculates Bessel functions I SUB(N+ALPHA) (X)
C  for non-negative argument X, and non-negative order N+ALPHA,
C  with or without exponential scaling.
C
C
C Explanation of variables in the calling sequence
C
C X     - Working precision non-negative real argument for which
C         I's or exponentially scaled I's (I*EXP(-X))
C         are to be calculated.  If I's are to be calculated,
C         X must be less than EXPARG (see below).
C ALPHA - Working precision fractional part of order for which
C         I's or exponentially scaled I's (I*EXP(-X)) are
C         to be calculated.  0 .LE. ALPHA .LT. 1.0.
C NB    - Integer number of functions to be calculated, NB .GT. 0.
C         The first function calculated is of order ALPHA, and the 
C         last is of order (NB - 1 + ALPHA).
C IZE   - Integer type.  IZE = 1 if unscaled I's are to calculated,
C         and 2 if exponentially scaled I's are to be calculated.
C B     - Working precision output vector of length NB.  If the routine
C         terminates normally (NCALC=NB), the vector B contains the 
C         functions I(ALPHA,X) through I(NB-1+ALPHA,X), or the
C         corresponding exponentially scaled functions.
C NCALC - Integer output variable indicating possible errors.
C         Before using the vector B, the user should check that
C         NCALC=NB, i.e., all orders have been calculated to
C         the desired accuracy.  See error returns below.
C 
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C   beta   = Radix for the floating-point system
C   minexp = Smallest representable power of beta
C   maxexp = Smallest power of beta that overflows
C   it     = Number of bits in the mantissa of a working precision
C            variable
C   NSIG   = Decimal significance desired.  Should be set to
C            INT(LOG10(2)*it+1).  Setting NSIG lower will result
C            in decreased accuracy while setting NSIG higher will
C            increase CPU time without increasing accuracy.  The
C            truncation error is limited to a relative error of
C            T=.5*10**(-NSIG).
C   ENTEN  = 10.0 ** K, where K is the largest integer such that
C            ENTEN is machine-representable in working precision
C   ENSIG  = 10.0 ** NSIG
C   RTNSIG = 10.0 ** (-K) for the smallest integer K such that
C            K .GE. NSIG/4
C   ENMTEN = Smallest ABS(X) such that X/4 does not underflow
C   XLARGE = Upper limit on the magnitude of X when IZE=2.  Bear
C            in mind that if ABS(X)=N, then at least N iterations
C            of the backward recursion will be executed.  The value
C            of 10.0 ** 4 is used on every machine.
C   EXPARG = Largest working precision argument that the library
C            EXP routine can handle and upper limit on the
C            magnitude of X when IZE=1; approximately 
C            LOG(beta**maxexp)
C
C
C     Approximate values for some important machines are:
C
C                        beta       minexp      maxexp       it
C
C  CRAY-1        (S.P.)    2        -8193        8191        48
C  Cyber 180/855
C    under NOS   (S.P.)    2         -975        1070        48
C  IEEE (IBM/XT,
C    SUN, etc.)  (S.P.)    2         -126         128        24
C  IEEE (IBM/XT,
C    SUN, etc.)  (D.P.)    2        -1022        1024        53
C  IBM 3033      (D.P.)   16          -65          63        14
C  VAX           (S.P.)    2         -128         127        24
C  VAX D-Format  (D.P.)    2         -128         127        56
C  VAX G-Format  (D.P.)    2        -1024        1023        53
C
C
C                        NSIG       ENTEN       ENSIG      RTNSIG
C
C CRAY-1        (S.P.)    15       1.0E+2465   1.0E+15     1.0E-4
C Cyber 180/855
C   under NOS   (S.P.)    15       1.0E+322    1.0E+15     1.0E-4
C IEEE (IBM/XT,
C   SUN, etc.)  (S.P.)     8       1.0E+38     1.0E+8      1.0E-2
C IEEE (IBM/XT,
C   SUN, etc.)  (D.P.)    16       1.0D+308    1.0D+16     1.0D-4
C IBM 3033      (D.P.)     5       1.0D+75     1.0D+5      1.0D-2
C VAX           (S.P.)     8       1.0E+38     1.0E+8      1.0E-2
C VAX D-Format  (D.P.)    17       1.0D+38     1.0D+17     1.0D-5
C VAX G-Format  (D.P.)    16       1.0D+307    1.0D+16     1.0D-4
C
C
C                         ENMTEN      XLARGE   EXPARG 
C
C CRAY-1        (S.P.)   1.84E-2466   1.0E+4    5677 
C Cyber 180/855
C   under NOS   (S.P.)   1.25E-293    1.0E+4     741
C IEEE (IBM/XT,
C   SUN, etc.)  (S.P.)   4.70E-38     1.0E+4      88  
C IEEE (IBM/XT,
C   SUN, etc.)  (D.P.)   8.90D-308    1.0D+4     709
C IBM 3033      (D.P.)   2.16D-78     1.0D+4     174
C VAX           (S.P.)   1.17E-38     1.0E+4      88
C VAX D-Format  (D.P.)   1.17D-38     1.0D+4      88
C VAX G-Format  (D.P.)   2.22D-308    1.0D+4     709
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C  In case of an error,  NCALC .NE. NB, and not all I's are
C  calculated to the desired accuracy.
C
C  NCALC .LT. 0:  An argument is out of range. For example,
C     NB .LE. 0, IZE is not 1 or 2, or IZE=1 and ABS(X) .GE. EXPARG.
C     In this case, the B-vector is not calculated, and NCALC is
C     set to MIN0(NB,0)-1 so that NCALC .NE. NB.
C
C  NB .GT. NCALC .GT. 0: Not all requested function values could
C     be calculated accurately.  This usually occurs because NB is
C     much larger than ABS(X).  In this case, B(N) is calculated
C     to the desired accuracy for N .LE. NCALC, but precision
C     is lost for NCALC .LT. N .LE. NB.  If B(N) does not vanish
C     for N .GT. NCALC (because it is too small to be represented),
C     and B(N)/B(NCALC) = 10**(-K), then only the first NSIG-K
C     significant figures of B(N) can be trusted.
C
C
C Intrinsic functions required are:
C
C     DBLE, EXP, DGAMMA, GAMMA, INT, MAX, MIN, REAL, SQRT
C
C
C Acknowledgement
C
C  This program is based on a program written by David J.
C  Sookne (2) that computes values of the Bessel functions J or
C  I of real argument and integer order.  Modifications include
C  the restriction of the computation to the I Bessel function
C  of non-negative real argument, the extension of the computation
C  to arbitrary positive order, the inclusion of optional
C  exponential scaling, and the elimination of most underflow.
C  An earlier version was published in (3).
C
C References: "A Note on Backward Recurrence Algorithms," Olver,
C              F. W. J., and Sookne, D. J., Math. Comp. 26, 1972,
C              pp 941-947.
C
C             "Bessel Functions of Real Argument and Integer Order,"
C              Sookne, D. J., NBS Jour. of Res. B. 77B, 1973, pp
C              125-132.
C
C             "ALGORITHM 597, Sequence of Modified Bessel Functions
C              of the First Kind," Cody, W. J., Trans. Math. Soft.,
C              1983, pp. 242-245.
C
C  Latest modification: May 30, 1989
C
C  Modified by: W. J. Cody and L. Stoltz
C               Applied Mathematics Division
C               Argonne National Laboratory
C               Argonne, IL  60439
C
C-------------------------------------------------------------------
      INTEGER IZE,K,L,MAGX,N,NB,NBMX,NCALC,NEND,NSIG,NSTART
CS    REAL              GAMMA,
      DOUBLE PRECISION DGAMMA,             
     1 ALPHA,B,CONST,CONV,EM,EMPAL,EMP2AL,EN,ENMTEN,ENSIG,
     2 ENTEN,EXPARG,FUNC,HALF,HALFX,ONE,P,PLAST,POLD,PSAVE,PSAVEL,
     3 RTNSIG,SUM,TEMPA,TEMPB,TEMPC,TEST,TOVER,TWO,X,XLARGE,ZERO
      DIMENSION B(NB)
C-------------------------------------------------------------------
C  Mathematical constants
C-------------------------------------------------------------------
CS    DATA ONE,TWO,ZERO,HALF,CONST/1.0E0,2.0E0,0.0E0,0.5E0,1.585E0/
      DATA ONE,TWO,ZERO,HALF,CONST/1.0D0,2.0D0,0.0D0,0.5D0,1.585D0/
C-------------------------------------------------------------------
C  Machine-dependent parameters
C-------------------------------------------------------------------
CS    DATA NSIG,XLARGE,EXPARG /8,1.0E4,88.0E0/
CS    DATA ENTEN,ENSIG,RTNSIG/1.0E38,1.0E8,1.0E-2/
CS    DATA ENMTEN/4.7E-38/
      DATA NSIG,XLARGE,EXPARG /16,1.0D4,709.0D0/
      DATA ENTEN,ENSIG,RTNSIG/1.0D308,1.0D16,1.0D-4/
      DATA ENMTEN/8.9D-308/
C-------------------------------------------------------------------
C  Statement functions for conversion
C-------------------------------------------------------------------
CS    CONV(N) = REAL(N)
CS    FUNC(X) = GAMMA(X)
      CONV(N) = DBLE(N)
      FUNC(X) = DGAMMA(X)
C-------------------------------------------------------------------
C Check for X, NB, OR IZE out of range.
C-------------------------------------------------------------------
      IF ((NB.GT.0) .AND. (X .GE. ZERO) .AND.
     1    (ALPHA .GE. ZERO) .AND. (ALPHA .LT. ONE) .AND.
     2    (((IZE .EQ. 1) .AND. (X .LE. EXPARG)) .OR.
     3     ((IZE .EQ. 2) .AND. (X .LE. XLARGE)))) THEN
C-------------------------------------------------------------------
C Use 2-term ascending series for small X
C-------------------------------------------------------------------
            NCALC = NB
            MAGX = INT(X)
            IF (X .GE. RTNSIG) THEN
C-------------------------------------------------------------------
C Initialize the forward sweep, the P-sequence of Olver
C-------------------------------------------------------------------
                  NBMX = NB-MAGX
                  N = MAGX+1
                  EN = CONV(N+N) + (ALPHA+ALPHA)
                  PLAST = ONE
                  P = EN / X
C-------------------------------------------------------------------
C Calculate general significance test
C-------------------------------------------------------------------
                  TEST = ENSIG + ENSIG
                  IF (2*MAGX .GT. 5*NSIG) THEN
                        TEST = SQRT(TEST*P)
                     ELSE
                        TEST = TEST / CONST**MAGX
                  END IF
                  IF (NBMX .GE. 3) THEN
C-------------------------------------------------------------------
C Calculate P-sequence until N = NB-1.  Check for possible overflow.
C-------------------------------------------------------------------
                     TOVER = ENTEN / ENSIG
                     NSTART = MAGX+2
                     NEND = NB - 1
                     DO 100 K = NSTART, NEND
                        N = K
                        EN = EN + TWO
                        POLD = PLAST
                        PLAST = P
                        P = EN * PLAST/X + POLD
                        IF (P .GT. TOVER) THEN
C-------------------------------------------------------------------
C To avoid overflow, divide P-sequence by TOVER.  Calculate
C P-sequence until ABS(P) .GT. 1.
C-------------------------------------------------------------------
                           TOVER = ENTEN
                           P = P / TOVER
                           PLAST = PLAST / TOVER
                           PSAVE = P
                           PSAVEL = PLAST
                           NSTART = N + 1
   60                      N = N + 1
                              EN = EN + TWO
                              POLD = PLAST
                              PLAST = P
                              P = EN * PLAST/X + POLD
                           IF (P .LE. ONE) GO TO 60
                           TEMPB = EN / X
C-------------------------------------------------------------------
C Calculate backward test, and find NCALC, the highest N
C such that the test is passed.
C-------------------------------------------------------------------
                           TEST = POLD*PLAST / ENSIG
                           TEST = TEST*(HALF-HALF/(TEMPB*TEMPB))
                           P = PLAST * TOVER
                           N = N - 1
                           EN = EN - TWO
                           NEND = MIN0(NB,N)
                           DO 80 L = NSTART, NEND
                              NCALC = L
                              POLD = PSAVEL
                              PSAVEL = PSAVE
                              PSAVE = EN * PSAVEL/X + POLD
                              IF (PSAVE*PSAVEL .GT. TEST) GO TO 90
   80                      CONTINUE
                           NCALC = NEND + 1
   90                      NCALC = NCALC - 1
                           GO TO 120
                        END IF
  100                CONTINUE
                     N = NEND
                     EN = CONV(N+N) + (ALPHA+ALPHA)
C-------------------------------------------------------------------
C Calculate special significance test for NBMX .GT. 2.
C-------------------------------------------------------------------
                     TEST = MAX(TEST,SQRT(PLAST*ENSIG)*SQRT(P+P))
                  END IF
C-------------------------------------------------------------------
C Calculate P-sequence until significance test passed.
C-------------------------------------------------------------------
  110             N = N + 1
                     EN = EN + TWO
                     POLD = PLAST
                     PLAST = P
                     P = EN * PLAST/X + POLD
                  IF (P .LT. TEST) GO TO 110
C-------------------------------------------------------------------
C Initialize the backward recursion and the normalization sum.
C-------------------------------------------------------------------
  120             N = N + 1
                  EN = EN + TWO
                  TEMPB = ZERO
                  TEMPA = ONE / P
                  EM = CONV(N) - ONE
                  EMPAL = EM + ALPHA
                  EMP2AL = (EM - ONE) + (ALPHA + ALPHA)
                  SUM = TEMPA * EMPAL * EMP2AL / EM
                  NEND = N - NB
                  IF (NEND .LT. 0) THEN
C-------------------------------------------------------------------
C N .LT. NB, so store B(N) and set higher orders to zero.
C-------------------------------------------------------------------
                        B(N) = TEMPA
                        NEND = -NEND
                        DO 130 L = 1, NEND
  130                      B(N+L) = ZERO
                     ELSE
                        IF (NEND .GT. 0) THEN
C-------------------------------------------------------------------
C Recur backward via difference equation, calculating (but
C not storing) B(N), until N = NB.
C-------------------------------------------------------------------
                           DO 140 L = 1, NEND
                              N = N - 1
                              EN = EN - TWO
                              TEMPC = TEMPB
                              TEMPB = TEMPA
                              TEMPA = (EN*TEMPB) / X + TEMPC
                              EM = EM - ONE
                              EMP2AL = EMP2AL - ONE
                              IF (N .EQ. 1) GO TO 150
                              IF (N .EQ. 2) EMP2AL = ONE
                              EMPAL = EMPAL - ONE
                              SUM = (SUM + TEMPA*EMPAL) * EMP2AL / EM
  140                      CONTINUE
                        END IF
C-------------------------------------------------------------------
C Store B(NB)
C-------------------------------------------------------------------
  150                   B(N) = TEMPA
                        IF (NB .LE. 1) THEN
                           SUM = (SUM + SUM) + TEMPA
                           GO TO 230
                        END IF
C-------------------------------------------------------------------
C Calculate and Store B(NB-1)
C-------------------------------------------------------------------
                        N = N - 1
                        EN = EN - TWO
                        B(N)  = (EN*TEMPA) / X + TEMPB
                        IF (N .EQ. 1) GO TO 220
                        EM = EM - ONE
                        EMP2AL = EMP2AL - ONE
                        IF (N .EQ. 2) EMP2AL = ONE
                        EMPAL = EMPAL - ONE
                        SUM = (SUM + B(N)*EMPAL) * EMP2AL / EM
                  END IF
                  NEND = N - 2
                  IF (NEND .GT. 0) THEN
C-------------------------------------------------------------------
C Calculate via difference equation and store B(N), until N = 2.
C-------------------------------------------------------------------
                     DO 200 L = 1, NEND
                        N = N - 1
                        EN = EN - TWO
                        B(N) = (EN*B(N+1)) / X +B(N+2)
                        EM = EM - ONE
                        EMP2AL = EMP2AL - ONE
                        IF (N .EQ. 2) EMP2AL = ONE
                        EMPAL = EMPAL - ONE
                        SUM = (SUM + B(N)*EMPAL) * EMP2AL / EM
  200                CONTINUE
                  END IF
C-------------------------------------------------------------------
C Calculate B(1)
C-------------------------------------------------------------------
                  B(1) = TWO*EMPAL*B(2) / X + B(3)
  220             SUM = (SUM + SUM) + B(1)
C-------------------------------------------------------------------
C Normalize.  Divide all B(N) by sum.
C-------------------------------------------------------------------
  230             IF (ALPHA .NE. ZERO)
     1               SUM = SUM * FUNC(ONE+ALPHA) * (X*HALF)**(-ALPHA)
                  IF (IZE .EQ. 1) SUM = SUM * EXP(-X)
                  TEMPA = ENMTEN
                  IF (SUM .GT. ONE) TEMPA = TEMPA * SUM
                  DO 260 N = 1, NB
                     IF (B(N) .LT. TEMPA) B(N) = ZERO
                     B(N) = B(N) / SUM
  260             CONTINUE
                  RETURN
C-------------------------------------------------------------------
C Two-term ascending series for small X.
C-------------------------------------------------------------------
               ELSE
                  TEMPA = ONE
                  EMPAL = ONE + ALPHA
                  HALFX = ZERO
                  IF (X .GT. ENMTEN) HALFX = HALF * X
                  IF (ALPHA .NE. ZERO) TEMPA = HALFX**ALPHA /FUNC(EMPAL)
                  IF (IZE .EQ. 2) TEMPA = TEMPA * EXP(-X)
                  TEMPB = ZERO
                  IF ((X+ONE) .GT. ONE) TEMPB = HALFX * HALFX
                  B(1) = TEMPA + TEMPA*TEMPB / EMPAL
                  IF ((X .NE. ZERO) .AND. (B(1) .EQ. ZERO)) NCALC = 0
                  IF (NB .GT. 1) THEN
                     IF (X .EQ. ZERO) THEN
                           DO 310 N = 2, NB
                              B(N) = ZERO
  310                      CONTINUE
                        ELSE
C-------------------------------------------------------------------
C Calculate higher-order functions.
C-------------------------------------------------------------------
                           TEMPC = HALFX
                           TOVER = (ENMTEN + ENMTEN) / X
                           IF (TEMPB .NE. ZERO) TOVER = ENMTEN / TEMPB
                           DO 340 N = 2, NB
                              TEMPA = TEMPA / EMPAL
                              EMPAL = EMPAL + ONE
                              TEMPA = TEMPA * TEMPC
                              IF (TEMPA .LE. TOVER*EMPAL) TEMPA = ZERO
                              B(N) = TEMPA + TEMPA*TEMPB / EMPAL
                              IF ((B(N) .EQ. ZERO) .AND. (NCALC .GT. N))
     1                             NCALC = N-1
  340                      CONTINUE
                     END IF
                  END IF
            END IF
         ELSE
            NCALC = MIN0(NB,0)-1
      END IF
      RETURN
C---------- Last line of RIBESL ----------
      END