1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
SUBROUTINE RJBESL(X, ALPHA, NB, B, NCALC)
C---------------------------------------------------------------------
C This routine calculates Bessel functions J sub(N+ALPHA) (X)
C for non-negative argument X, and non-negative order N+ALPHA.
C
C
C Explanation of variables in the calling sequence.
C
C X - working precision non-negative real argument for which
C J's are to be calculated.
C ALPHA - working precision fractional part of order for which
C J's or exponentially scaled J'r (J*exp(X)) are
C to be calculated. 0 <= ALPHA < 1.0.
C NB - integer number of functions to be calculated, NB > 0.
C The first function calculated is of order ALPHA, and the
C last is of order (NB - 1 + ALPHA).
C B - working precision output vector of length NB. If RJBESL
C terminates normally (NCALC=NB), the vector B contains the
C functions J/ALPHA/(X) through J/NB-1+ALPHA/(X), or the
C corresponding exponentially scaled functions.
C NCALC - integer output variable indicating possible errors.
C Before using the vector B, the user should check that
C NCALC=NB, i.e., all orders have been calculated to
C the desired accuracy. See Error Returns below.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C it = Number of bits in the mantissa of a working precision
C variable
C NSIG = Decimal significance desired. Should be set to
C INT(LOG10(2)*it+1). Setting NSIG lower will result
C in decreased accuracy while setting NSIG higher will
C increase CPU time without increasing accuracy. The
C truncation error is limited to a relative error of
C T=.5*10**(-NSIG).
C ENTEN = 10.0 ** K, where K is the largest integer such that
C ENTEN is machine-representable in working precision
C ENSIG = 10.0 ** NSIG
C RTNSIG = 10.0 ** (-K) for the smallest integer K such that
C K .GE. NSIG/4
C ENMTEN = Smallest ABS(X) such that X/4 does not underflow
C XLARGE = Upper limit on the magnitude of X. If ABS(X)=N,
C then at least N iterations of the backward recursion
C will be executed. The value of 10.0 ** 4 is used on
C every machine.
C
C
C Approximate values for some important machines are:
C
C
C it NSIG ENTEN ENSIG
C
C CRAY-1 (S.P.) 48 15 1.0E+2465 1.0E+15
C Cyber 180/855
C under NOS (S.P.) 48 15 1.0E+322 1.0E+15
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 24 8 1.0E+38 1.0E+8
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 53 16 1.0D+308 1.0D+16
C IBM 3033 (D.P.) 14 5 1.0D+75 1.0D+5
C VAX (S.P.) 24 8 1.0E+38 1.0E+8
C VAX D-Format (D.P.) 56 17 1.0D+38 1.0D+17
C VAX G-Format (D.P.) 53 16 1.0D+307 1.0D+16
C
C
C RTNSIG ENMTEN XLARGE
C
C CRAY-1 (S.P.) 1.0E-4 1.84E-2466 1.0E+4
C Cyber 180/855
C under NOS (S.P.) 1.0E-4 1.25E-293 1.0E+4
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 1.0E-2 4.70E-38 1.0E+4
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 1.0E-4 8.90D-308 1.0D+4
C IBM 3033 (D.P.) 1.0E-2 2.16D-78 1.0D+4
C VAX (S.P.) 1.0E-2 1.17E-38 1.0E+4
C VAX D-Format (D.P.) 1.0E-5 1.17D-38 1.0D+4
C VAX G-Format (D.P.) 1.0E-4 2.22D-308 1.0D+4
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C In case of an error, NCALC .NE. NB, and not all J's are
C calculated to the desired accuracy.
C
C NCALC .LT. 0: An argument is out of range. For example,
C NBES .LE. 0, ALPHA .LT. 0 or .GT. 1, or X is too large.
C In this case, B(1) is set to zero, the remainder of the
C B-vector is not calculated, and NCALC is set to
C MIN(NB,0)-1 so that NCALC .NE. NB.
C
C NB .GT. NCALC .GT. 0: Not all requested function values could
C be calculated accurately. This usually occurs because NB is
C much larger than ABS(X). In this case, B(N) is calculated
C to the desired accuracy for N .LE. NCALC, but precision
C is lost for NCALC .LT. N .LE. NB. If B(N) does not vanish
C for N .GT. NCALC (because it is too small to be represented),
C and B(N)/B(NCALC) = 10**(-K), then only the first NSIG-K
C significant figures of B(N) can be trusted.
C
C
C Intrinsic and other functions required are:
C
C ABS, AINT, COS, DBLE, GAMMA (or DGAMMA), INT, MAX, MIN,
C
C REAL, SIN, SQRT
C
C
C Acknowledgement
C
C This program is based on a program written by David J. Sookne
C (2) that computes values of the Bessel functions J or I of real
C argument and integer order. Modifications include the restriction
C of the computation to the J Bessel function of non-negative real
C argument, the extension of the computation to arbitrary positive
C order, and the elimination of most underflow.
C
C References: "A Note on Backward Recurrence Algorithms," Olver,
C F. W. J., and Sookne, D. J., Math. Comp. 26, 1972,
C pp 941-947.
C
C "Bessel Functions of Real Argument and Integer Order,"
C Sookne, D. J., NBS Jour. of Res. B. 77B, 1973, pp
C 125-132.
C
C Latest modification: March 19, 1990
C
C Author: W. J. Cody
C Applied Mathematics Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C---------------------------------------------------------------------
INTEGER I,J,K,L,M,MAGX,N,NB,NBMX,NCALC,NEND,NSTART
CS REAL GAMMA,
DOUBLE PRECISION DGAMMA,
1 ALPHA,ALPEM,ALP2EM,B,CAPP,CAPQ,CONV,EIGHTH,EM,EN,ENMTEN,ENSIG,
2 ENTEN,FACT,FOUR,FUNC,GNU,HALF,HALFX,ONE,ONE30,P,PI2,PLAST,
3 POLD,PSAVE,PSAVEL,RTNSIG,S,SUM,T,T1,TEMPA,TEMPB,TEMPC,TEST,
4 THREE,THREE5,TOVER,TWO,TWOFIV,TWOPI1,TWOPI2,X,XC,XIN,XK,XLARGE,
5 XM,VCOS,VSIN,Z,ZERO
DIMENSION B(NB), FACT(25)
C---------------------------------------------------------------------
C Mathematical constants
C
C PI2 - 2 / PI
C TWOPI1 - first few significant digits of 2 * PI
C TWOPI2 - (2*PI - TWOPI) to working precision, i.e.,
C TWOPI1 + TWOPI2 = 2 * PI to extra precision.
C---------------------------------------------------------------------
CS DATA PI2, TWOPI1, TWOPI2 /0.636619772367581343075535E0,6.28125E0,
CS 1 1.935307179586476925286767E-3/
CS DATA ZERO, EIGHTH, HALF, ONE /0.0E0,0.125E0,0.5E0,1.0E0/
CS DATA TWO, THREE, FOUR, TWOFIV /2.0E0,3.0E0,4.0E0,25.0E0/
CS DATA ONE30, THREE5 /130.0E0,35.0E0/
DATA PI2, TWOPI1, TWOPI2 /0.636619772367581343075535D0,6.28125D0,
1 1.935307179586476925286767D-3/
DATA ZERO, EIGHTH, HALF, ONE /0.0D0,0.125D0,0.5D0,1.0D0/
DATA TWO, THREE, FOUR, TWOFIV /2.0D0,3.0D0,4.0D0,25.0D0/
DATA ONE30, THREE5 /130.0D0,35.0D0/
C---------------------------------------------------------------------
C Machine-dependent parameters
C---------------------------------------------------------------------
CS DATA ENTEN, ENSIG, RTNSIG /1.0E38,1.0E8,1.0E-2/
CS DATA ENMTEN, XLARGE /1.2E-37,1.0E4/
DATA ENTEN, ENSIG, RTNSIG /1.0D308,1.0D16,1.0D-4/
DATA ENMTEN, XLARGE /8.9D-308,1.0D4/
C---------------------------------------------------------------------
C Factorial(N)
C---------------------------------------------------------------------
CS DATA FACT /1.0E0,1.0E0,2.0E0,6.0E0,24.0E0,1.2E2,7.2E2,5.04E3,
CS 1 4.032E4,3.6288E5,3.6288E6,3.99168E7,4.790016E8,6.2270208E9,
CS 2 8.71782912E10,1.307674368E12,2.0922789888E13,3.55687428096E14,
CS 3 6.402373705728E15,1.21645100408832E17,2.43290200817664E18,
CS 4 5.109094217170944E19,1.12400072777760768E21,
CS 5 2.585201673888497664E22,6.2044840173323943936E23/
DATA FACT /1.0D0,1.0D0,2.0D0,6.0D0,24.0D0,1.2D2,7.2D2,5.04D3,
1 4.032D4,3.6288D5,3.6288D6,3.99168D7,4.790016D8,6.2270208D9,
2 8.71782912D10,1.307674368D12,2.0922789888D13,3.55687428096D14,
3 6.402373705728D15,1.21645100408832D17,2.43290200817664D18,
4 5.109094217170944D19,1.12400072777760768D21,
5 2.585201673888497664D22,6.2044840173323943936D23/
C---------------------------------------------------------------------
C Statement functions for conversion and the gamma function.
C---------------------------------------------------------------------
CS CONV(I) = REAL(I)
CS FUNC(X) = GAMMA(X)
CONV(I) = DBLE(I)
FUNC(X) = DGAMMA(X)
C---------------------------------------------------------------------
C Check for out of range arguments.
C---------------------------------------------------------------------
MAGX = INT(X)
IF ((NB.GT.0) .AND. (X.GE.ZERO) .AND. (X.LE.XLARGE)
1 .AND. (ALPHA.GE.ZERO) .AND. (ALPHA.LT.ONE))
2 THEN
C---------------------------------------------------------------------
C Initialize result array to zero.
C---------------------------------------------------------------------
NCALC = NB
DO 20 I=1,NB
B(I) = ZERO
20 CONTINUE
C---------------------------------------------------------------------
C Branch to use 2-term ascending series for small X and asymptotic
C form for large X when NB is not too large.
C---------------------------------------------------------------------
IF (X.LT.RTNSIG) THEN
C---------------------------------------------------------------------
C Two-term ascending series for small X.
C---------------------------------------------------------------------
TEMPA = ONE
ALPEM = ONE + ALPHA
HALFX = ZERO
IF (X.GT.ENMTEN) HALFX = HALF*X
IF (ALPHA.NE.ZERO)
1 TEMPA = HALFX**ALPHA/(ALPHA*FUNC(ALPHA))
TEMPB = ZERO
IF ((X+ONE).GT.ONE) TEMPB = -HALFX*HALFX
B(1) = TEMPA + TEMPA*TEMPB/ALPEM
IF ((X.NE.ZERO) .AND. (B(1).EQ.ZERO)) NCALC = 0
IF (NB .NE. 1) THEN
IF (X .LE. ZERO) THEN
DO 30 N=2,NB
B(N) = ZERO
30 CONTINUE
ELSE
C---------------------------------------------------------------------
C Calculate higher order functions.
C---------------------------------------------------------------------
TEMPC = HALFX
TOVER = (ENMTEN+ENMTEN)/X
IF (TEMPB.NE.ZERO) TOVER = ENMTEN/TEMPB
DO 50 N=2,NB
TEMPA = TEMPA/ALPEM
ALPEM = ALPEM + ONE
TEMPA = TEMPA*TEMPC
IF (TEMPA.LE.TOVER*ALPEM) TEMPA = ZERO
B(N) = TEMPA + TEMPA*TEMPB/ALPEM
IF ((B(N).EQ.ZERO) .AND. (NCALC.GT.N))
1 NCALC = N-1
50 CONTINUE
END IF
END IF
ELSE IF ((X.GT.TWOFIV) .AND. (NB.LE.MAGX+1)) THEN
C---------------------------------------------------------------------
C Asymptotic series for X .GT. 21.0.
C---------------------------------------------------------------------
XC = SQRT(PI2/X)
XIN = (EIGHTH/X)**2
M = 11
IF (X.GE.THREE5) M = 8
IF (X.GE.ONE30) M = 4
XM = FOUR*CONV(M)
C---------------------------------------------------------------------
C Argument reduction for SIN and COS routines.
C---------------------------------------------------------------------
T = AINT(X/(TWOPI1+TWOPI2)+HALF)
Z = ((X-T*TWOPI1)-T*TWOPI2) - (ALPHA+HALF)/PI2
VSIN = SIN(Z)
VCOS = COS(Z)
GNU = ALPHA + ALPHA
DO 80 I=1,2
S = ((XM-ONE)-GNU)*((XM-ONE)+GNU)*XIN*HALF
T = (GNU-(XM-THREE))*(GNU+(XM-THREE))
CAPP = S*T/FACT(2*M+1)
T1 = (GNU-(XM+ONE))*(GNU+(XM+ONE))
CAPQ = S*T1/FACT(2*M+2)
XK = XM
K = M + M
T1 = T
DO 70 J=2,M
XK = XK - FOUR
S = ((XK-ONE)-GNU)*((XK-ONE)+GNU)
T = (GNU-(XK-THREE))*(GNU+(XK-THREE))
CAPP = (CAPP+ONE/FACT(K-1))*S*T*XIN
CAPQ = (CAPQ+ONE/FACT(K))*S*T1*XIN
K = K - 2
T1 = T
70 CONTINUE
CAPP = CAPP + ONE
CAPQ = (CAPQ+ONE)*(GNU*GNU-ONE)*(EIGHTH/X)
B(I) = XC*(CAPP*VCOS-CAPQ*VSIN)
IF (NB.EQ.1) GO TO 300
T = VSIN
VSIN = -VCOS
VCOS = T
GNU = GNU + TWO
80 CONTINUE
C---------------------------------------------------------------------
C If NB .GT. 2, compute J(X,ORDER+I) I = 2, NB-1
C---------------------------------------------------------------------
IF (NB .GT. 2) THEN
GNU = ALPHA + ALPHA + TWO
DO 90 J=3,NB
B(J) = GNU*B(J-1)/X - B(J-2)
GNU = GNU + TWO
90 CONTINUE
END IF
C---------------------------------------------------------------------
C Use recurrence to generate results. First initialize the
C calculation of P*S.
C---------------------------------------------------------------------
ELSE
NBMX = NB - MAGX
N = MAGX + 1
EN = CONV(N+N) + (ALPHA+ALPHA)
PLAST = ONE
P = EN/X
C---------------------------------------------------------------------
C Calculate general significance test.
C---------------------------------------------------------------------
TEST = ENSIG + ENSIG
IF (NBMX .GE. 3) THEN
C---------------------------------------------------------------------
C Calculate P*S until N = NB-1. Check for possible overflow.
C---------------------------------------------------------------------
TOVER = ENTEN/ENSIG
NSTART = MAGX + 2
NEND = NB - 1
EN = CONV(NSTART+NSTART) - TWO + (ALPHA+ALPHA)
DO 130 K=NSTART,NEND
N = K
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN*PLAST/X - POLD
IF (P.GT.TOVER) THEN
C---------------------------------------------------------------------
C To avoid overflow, divide P*S by TOVER. Calculate P*S until
C ABS(P) .GT. 1.
C---------------------------------------------------------------------
TOVER = ENTEN
P = P/TOVER
PLAST = PLAST/TOVER
PSAVE = P
PSAVEL = PLAST
NSTART = N + 1
100 N = N + 1
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN*PLAST/X - POLD
IF (P.LE.ONE) GO TO 100
TEMPB = EN/X
C---------------------------------------------------------------------
C Calculate backward test and find NCALC, the highest N such that
C the test is passed.
C---------------------------------------------------------------------
TEST = POLD*PLAST*(HALF-HALF/(TEMPB*TEMPB))
TEST = TEST/ENSIG
P = PLAST*TOVER
N = N - 1
EN = EN - TWO
NEND = MIN(NB,N)
DO 110 L=NSTART,NEND
POLD = PSAVEL
PSAVEL = PSAVE
PSAVE = EN*PSAVEL/X - POLD
IF (PSAVE*PSAVEL.GT.TEST) THEN
NCALC = L - 1
GO TO 190
END IF
110 CONTINUE
NCALC = NEND
GO TO 190
END IF
130 CONTINUE
N = NEND
EN = CONV(N+N) + (ALPHA+ALPHA)
C---------------------------------------------------------------------
C Calculate special significance test for NBMX .GT. 2.
C---------------------------------------------------------------------
TEST = MAX(TEST,SQRT(PLAST*ENSIG)*SQRT(P+P))
END IF
C---------------------------------------------------------------------
C Calculate P*S until significance test passes.
C---------------------------------------------------------------------
140 N = N + 1
EN = EN + TWO
POLD = PLAST
PLAST = P
P = EN*PLAST/X - POLD
IF (P.LT.TEST) GO TO 140
C---------------------------------------------------------------------
C Initialize the backward recursion and the normalization sum.
C---------------------------------------------------------------------
190 N = N + 1
EN = EN + TWO
TEMPB = ZERO
TEMPA = ONE/P
M = 2*N - 4*(N/2)
SUM = ZERO
EM = CONV(N/2)
ALPEM = (EM-ONE) + ALPHA
ALP2EM = (EM+EM) + ALPHA
IF (M .NE. 0) SUM = TEMPA*ALPEM*ALP2EM/EM
NEND = N - NB
IF (NEND .GT. 0) THEN
C---------------------------------------------------------------------
C Recur backward via difference equation, calculating (but not
C storing) B(N), until N = NB.
C---------------------------------------------------------------------
DO 200 L=1,NEND
N = N - 1
EN = EN - TWO
TEMPC = TEMPB
TEMPB = TEMPA
TEMPA = (EN*TEMPB)/X - TEMPC
M = 2 - M
IF (M .NE. 0) THEN
EM = EM - ONE
ALP2EM = (EM+EM) + ALPHA
IF (N.EQ.1) GO TO 210
ALPEM = (EM-ONE) + ALPHA
IF (ALPEM.EQ.ZERO) ALPEM = ONE
SUM = (SUM+TEMPA*ALP2EM)*ALPEM/EM
END IF
200 CONTINUE
END IF
C---------------------------------------------------------------------
C Store B(NB).
C---------------------------------------------------------------------
210 B(N) = TEMPA
IF (NEND .GE. 0) THEN
IF (NB .LE. 1) THEN
ALP2EM = ALPHA
IF ((ALPHA+ONE).EQ.ONE) ALP2EM = ONE
SUM = SUM + B(1)*ALP2EM
GO TO 250
ELSE
C---------------------------------------------------------------------
C Calculate and store B(NB-1).
C---------------------------------------------------------------------
N = N - 1
EN = EN - TWO
B(N) = (EN*TEMPA)/X - TEMPB
IF (N.EQ.1) GO TO 240
M = 2 - M
IF (M .NE. 0) THEN
EM = EM - ONE
ALP2EM = (EM+EM) + ALPHA
ALPEM = (EM-ONE) + ALPHA
IF (ALPEM.EQ.ZERO) ALPEM = ONE
SUM = (SUM+B(N)*ALP2EM)*ALPEM/EM
END IF
END IF
END IF
NEND = N - 2
IF (NEND .NE. 0) THEN
C---------------------------------------------------------------------
C Calculate via difference equation and store B(N), until N = 2.
C---------------------------------------------------------------------
DO 230 L=1,NEND
N = N - 1
EN = EN - TWO
B(N) = (EN*B(N+1))/X - B(N+2)
M = 2 - M
IF (M .NE. 0) THEN
EM = EM - ONE
ALP2EM = (EM+EM) + ALPHA
ALPEM = (EM-ONE) + ALPHA
IF (ALPEM.EQ.ZERO) ALPEM = ONE
SUM = (SUM+B(N)*ALP2EM)*ALPEM/EM
END IF
230 CONTINUE
END IF
C---------------------------------------------------------------------
C Calculate B(1).
C---------------------------------------------------------------------
B(1) = TWO*(ALPHA+ONE)*B(2)/X - B(3)
240 EM = EM - ONE
ALP2EM = (EM+EM) + ALPHA
IF (ALP2EM.EQ.ZERO) ALP2EM = ONE
SUM = SUM + B(1)*ALP2EM
C---------------------------------------------------------------------
C Normalize. Divide all B(N) by sum.
C---------------------------------------------------------------------
250 IF ((ALPHA+ONE).NE.ONE)
1 SUM = SUM*FUNC(ALPHA)*(X*HALF)**(-ALPHA)
TEMPA = ENMTEN
IF (SUM.GT.ONE) TEMPA = TEMPA*SUM
DO 260 N=1,NB
IF (ABS(B(N)).LT.TEMPA) B(N) = ZERO
B(N) = B(N)/SUM
260 CONTINUE
END IF
C---------------------------------------------------------------------
C Error return -- X, NB, or ALPHA is out of range.
C---------------------------------------------------------------------
ELSE
B(1) = ZERO
NCALC = MIN(NB,0) - 1
END IF
C---------------------------------------------------------------------
C Exit
C---------------------------------------------------------------------
300 RETURN
C ---------- Last line of RJBESL ----------
END
|