1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
SUBROUTINE RKBESL(X,ALPHA,NB,IZE,BK,NCALC)
C-------------------------------------------------------------------
C
C This FORTRAN 77 routine calculates modified Bessel functions
C of the second kind, K SUB(N+ALPHA) (X), for non-negative
C argument X, and non-negative order N+ALPHA, with or without
C exponential scaling.
C
C Explanation of variables in the calling sequence
C
C Description of output values ..
C
C X - Working precision non-negative real argument for which
C K's or exponentially scaled K's (K*EXP(X))
C are to be calculated. If K's are to be calculated,
C X must not be greater than XMAX (see below).
C ALPHA - Working precision fractional part of order for which
C K's or exponentially scaled K's (K*EXP(X)) are
C to be calculated. 0 .LE. ALPHA .LT. 1.0.
C NB - Integer number of functions to be calculated, NB .GT. 0.
C The first function calculated is of order ALPHA, and the
C last is of order (NB - 1 + ALPHA).
C IZE - Integer type. IZE = 1 if unscaled K's are to be calculated,
C and 2 if exponentially scaled K's are to be calculated.
C BK - Working precision output vector of length NB. If the
C routine terminates normally (NCALC=NB), the vector BK
C contains the functions K(ALPHA,X), ... , K(NB-1+ALPHA,X),
C or the corresponding exponentially scaled functions.
C If (0 .LT. NCALC .LT. NB), BK(I) contains correct function
C values for I .LE. NCALC, and contains the ratios
C K(ALPHA+I-1,X)/K(ALPHA+I-2,X) for the rest of the array.
C NCALC - Integer output variable indicating possible errors.
C Before using the vector BK, the user should check that
C NCALC=NB, i.e., all orders have been calculated to
C the desired accuracy. See error returns below.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta = Radix for the floating-point system
C minexp = Smallest representable power of beta
C maxexp = Smallest power of beta that overflows
C EPS = The smallest positive floating-point number such that
C 1.0+EPS .GT. 1.0
C XMAX = Upper limit on the magnitude of X when IZE=1; Solution
C to equation:
C W(X) * (1-1/8X+9/128X**2) = beta**minexp
C where W(X) = EXP(-X)*SQRT(PI/2X)
C SQXMIN = Square root of beta**minexp
C XINF = Largest positive machine number; approximately
C beta**maxexp
C XMIN = Smallest positive machine number; approximately
C beta**minexp
C
C
C Approximate values for some important machines are:
C
C beta minexp maxexp EPS
C
C CRAY-1 (S.P.) 2 -8193 8191 7.11E-15
C Cyber 180/185
C under NOS (S.P.) 2 -975 1070 3.55E-15
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 2 -126 128 1.19E-7
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 2 -1022 1024 2.22D-16
C IBM 3033 (D.P.) 16 -65 63 2.22D-16
C VAX (S.P.) 2 -128 127 5.96E-8
C VAX D-Format (D.P.) 2 -128 127 1.39D-17
C VAX G-Format (D.P.) 2 -1024 1023 1.11D-16
C
C
C SQXMIN XINF XMIN XMAX
C
C CRAY-1 (S.P.) 6.77E-1234 5.45E+2465 4.59E-2467 5674.858
C Cyber 180/855
C under NOS (S.P.) 1.77E-147 1.26E+322 3.14E-294 672.788
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 1.08E-19 3.40E+38 1.18E-38 85.337
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 1.49D-154 1.79D+308 2.23D-308 705.342
C IBM 3033 (D.P.) 7.35D-40 7.23D+75 5.40D-79 177.852
C VAX (S.P.) 5.42E-20 1.70E+38 2.94E-39 86.715
C VAX D-Format (D.P.) 5.42D-20 1.70D+38 2.94D-39 86.715
C VAX G-Format (D.P.) 7.46D-155 8.98D+307 5.57D-309 706.728
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C In case of an error, NCALC .NE. NB, and not all K's are
C calculated to the desired accuracy.
C
C NCALC .LT. -1: An argument is out of range. For example,
C NB .LE. 0, IZE is not 1 or 2, or IZE=1 and ABS(X) .GE.
C XMAX. In this case, the B-vector is not calculated,
C and NCALC is set to MIN0(NB,0)-2 so that NCALC .NE. NB.
C NCALC = -1: Either K(ALPHA,X) .GE. XINF or
C K(ALPHA+NB-1,X)/K(ALPHA+NB-2,X) .GE. XINF. In this case,
C the B-vector is not calculated. Note that again
C NCALC .NE. NB.
C
C 0 .LT. NCALC .LT. NB: Not all requested function values could
C be calculated accurately. BK(I) contains correct function
C values for I .LE. NCALC, and contains the ratios
C K(ALPHA+I-1,X)/K(ALPHA+I-2,X) for the rest of the array.
C
C
C Intrinsic functions required are:
C
C ABS, AINT, EXP, INT, LOG, MAX, MIN, SINH, SQRT
C
C
C Acknowledgement
C
C This program is based on a program written by J. B. Campbell
C (2) that computes values of the Bessel functions K of real
C argument and real order. Modifications include the addition
C of non-scaled functions, parameterization of machine
C dependencies, and the use of more accurate approximations
C for SINH and SIN.
C
C References: "On Temme's Algorithm for the Modified Bessel
C Functions of the Third Kind," Campbell, J. B.,
C TOMS 6(4), Dec. 1980, pp. 581-586.
C
C "A FORTRAN IV Subroutine for the Modified Bessel
C Functions of the Third Kind of Real Order and Real
C Argument," Campbell, J. B., Report NRC/ERB-925,
C National Research Council, Canada.
C
C Latest modification: May 30, 1989
C
C Modified by: W. J. Cody and L. Stoltz
C Applied Mathematics Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C-------------------------------------------------------------------
INTEGER I,IEND,ITEMP,IZE,J,K,M,MPLUS1,NB,NCALC
CS REAL
DOUBLE PRECISION
1 A,ALPHA,BLPHA,BK,BK1,BK2,C,D,DM,D1,D2,D3,ENU,EPS,ESTF,ESTM,
2 EX,FOUR,F0,F1,F2,HALF,ONE,P,P0,Q,Q0,R,RATIO,S,SQXMIN,T,TINYX,
3 TWO,TWONU,TWOX,T1,T2,WMINF,X,XINF,XMAX,XMIN,X2BY4,ZERO
DIMENSION BK(1),P(8),Q(7),R(5),S(4),T(6),ESTM(6),ESTF(7)
C---------------------------------------------------------------------
C Mathematical constants
C A = LOG(2.D0) - Euler's constant
C D = SQRT(2.D0/PI)
C---------------------------------------------------------------------
CS DATA HALF,ONE,TWO,ZERO/0.5E0,1.0E0,2.0E0,0.0E0/
CS DATA FOUR,TINYX/4.0E0,1.0E-10/
CS DATA A/ 0.11593151565841244881E0/,D/0.797884560802865364E0/
DATA HALF,ONE,TWO,ZERO/0.5D0,1.0D0,2.0D0,0.0D0/
DATA FOUR,TINYX/4.0D0,1.0D-10/
DATA A/ 0.11593151565841244881D0/,D/0.797884560802865364D0/
C---------------------------------------------------------------------
C Machine dependent parameters
C---------------------------------------------------------------------
CS DATA EPS/1.19E-7/,SQXMIN/1.08E-19/,XINF/3.40E+38/
CS DATA XMIN/1.18E-38/,XMAX/85.337E0/
DATA EPS/2.22D-16/,SQXMIN/1.49D-154/,XINF/1.79D+308/
DATA XMIN/2.23D-308/,XMAX/705.342D0/
C---------------------------------------------------------------------
C P, Q - Approximation for LOG(GAMMA(1+ALPHA))/ALPHA
C + Euler's constant
C Coefficients converted from hex to decimal and modified
C by W. J. Cody, 2/26/82
C R, S - Approximation for (1-ALPHA*PI/SIN(ALPHA*PI))/(2.D0*ALPHA)
C T - Approximation for SINH(Y)/Y
C---------------------------------------------------------------------
CS DATA P/ 0.805629875690432845E00, 0.204045500205365151E02,
CS 1 0.157705605106676174E03, 0.536671116469207504E03,
CS 2 0.900382759291288778E03, 0.730923886650660393E03,
CS 3 0.229299301509425145E03, 0.822467033424113231E00/
CS DATA Q/ 0.294601986247850434E02, 0.277577868510221208E03,
CS 1 0.120670325591027438E04, 0.276291444159791519E04,
CS 2 0.344374050506564618E04, 0.221063190113378647E04,
CS 3 0.572267338359892221E03/
CS DATA R/-0.48672575865218401848E+0, 0.13079485869097804016E+2,
CS 1 -0.10196490580880537526E+3, 0.34765409106507813131E+3,
CS 2 0.34958981245219347820E-3/
CS DATA S/-0.25579105509976461286E+2, 0.21257260432226544008E+3,
CS 1 -0.61069018684944109624E+3, 0.42269668805777760407E+3/
CS DATA T/ 0.16125990452916363814E-9, 0.25051878502858255354E-7,
CS 1 0.27557319615147964774E-5, 0.19841269840928373686E-3,
CS 2 0.83333333333334751799E-2, 0.16666666666666666446E+0/
CS DATA ESTM/5.20583E1, 5.7607E0, 2.7782E0, 1.44303E1, 1.853004E2,
CS 1 9.3715E0/
CS DATA ESTF/4.18341E1, 7.1075E0, 6.4306E0, 4.25110E1, 1.35633E0,
CS 1 8.45096E1, 2.0E1/
DATA P/ 0.805629875690432845D00, 0.204045500205365151D02,
1 0.157705605106676174D03, 0.536671116469207504D03,
2 0.900382759291288778D03, 0.730923886650660393D03,
3 0.229299301509425145D03, 0.822467033424113231D00/
DATA Q/ 0.294601986247850434D02, 0.277577868510221208D03,
1 0.120670325591027438D04, 0.276291444159791519D04,
2 0.344374050506564618D04, 0.221063190113378647D04,
3 0.572267338359892221D03/
DATA R/-0.48672575865218401848D+0, 0.13079485869097804016D+2,
1 -0.10196490580880537526D+3, 0.34765409106507813131D+3,
2 0.34958981245219347820D-3/
DATA S/-0.25579105509976461286D+2, 0.21257260432226544008D+3,
1 -0.61069018684944109624D+3, 0.42269668805777760407D+3/
DATA T/ 0.16125990452916363814D-9, 0.25051878502858255354D-7,
1 0.27557319615147964774D-5, 0.19841269840928373686D-3,
2 0.83333333333334751799D-2, 0.16666666666666666446D+0/
DATA ESTM/5.20583D1, 5.7607D0, 2.7782D0, 1.44303D1, 1.853004D2,
1 9.3715D0/
DATA ESTF/4.18341D1, 7.1075D0, 6.4306D0, 4.25110D1, 1.35633D0,
1 8.45096D1, 2.0D1/
C---------------------------------------------------------------------
EX = X
ENU = ALPHA
NCALC = MIN(NB,0)-2
IF ((NB .GT. 0) .AND. ((ENU .GE. ZERO) .AND. (ENU .LT. ONE))
1 .AND. ((IZE .GE. 1) .AND. (IZE .LE. 2)) .AND.
2 ((IZE .NE. 1) .OR. (EX .LE. XMAX)) .AND.
3 (EX .GT. ZERO)) THEN
K = 0
IF (ENU .LT. SQXMIN) ENU = ZERO
IF (ENU .GT. HALF) THEN
K = 1
ENU = ENU - ONE
END IF
TWONU = ENU+ENU
IEND = NB+K-1
C = ENU*ENU
D3 = -C
IF (EX .LE. ONE) THEN
C---------------------------------------------------------------------
C Calculation of P0 = GAMMA(1+ALPHA) * (2/X)**ALPHA
C Q0 = GAMMA(1-ALPHA) * (X/2)**ALPHA
C---------------------------------------------------------------------
D1 = ZERO
D2 = P(1)
T1 = ONE
T2 = Q(1)
DO 10 I = 2,7,2
D1 = C*D1+P(I)
D2 = C*D2+P(I+1)
T1 = C*T1+Q(I)
T2 = C*T2+Q(I+1)
10 CONTINUE
D1 = ENU*D1
T1 = ENU*T1
F1 = LOG(EX)
F0 = A+ENU*(P(8)-ENU*(D1+D2)/(T1+T2))-F1
Q0 = EXP(-ENU*(A-ENU*(P(8)+ENU*(D1-D2)/(T1-T2))-F1))
F1 = ENU*F0
P0 = EXP(F1)
C---------------------------------------------------------------------
C Calculation of F0 =
C---------------------------------------------------------------------
D1 = R(5)
T1 = ONE
DO 20 I = 1,4
D1 = C*D1+R(I)
T1 = C*T1+S(I)
20 CONTINUE
IF (ABS(F1) .LE. HALF) THEN
F1 = F1*F1
D2 = ZERO
DO 30 I = 1,6
D2 = F1*D2+T(I)
30 CONTINUE
D2 = F0+F0*F1*D2
ELSE
D2 = SINH(F1)/ENU
END IF
F0 = D2-ENU*D1/(T1*P0)
IF (EX .LE. TINYX) THEN
C--------------------------------------------------------------------
C X.LE.1.0E-10
C Calculation of K(ALPHA,X) and X*K(ALPHA+1,X)/K(ALPHA,X)
C--------------------------------------------------------------------
BK(1) = F0+EX*F0
IF (IZE .EQ. 1) BK(1) = BK(1)-EX*BK(1)
RATIO = P0/F0
C = EX*XINF
IF (K .NE. 0) THEN
C--------------------------------------------------------------------
C Calculation of K(ALPHA,X) and X*K(ALPHA+1,X)/K(ALPHA,X),
C ALPHA .GE. 1/2
C--------------------------------------------------------------------
NCALC = -1
IF (BK(1) .GE. C/RATIO) GO TO 500
BK(1) = RATIO*BK(1)/EX
TWONU = TWONU+TWO
RATIO = TWONU
END IF
NCALC = 1
IF (NB .EQ. 1) GO TO 500
C--------------------------------------------------------------------
C Calculate K(ALPHA+L,X)/K(ALPHA+L-1,X), L = 1, 2, ... , NB-1
C--------------------------------------------------------------------
NCALC = -1
DO 80 I = 2,NB
IF (RATIO .GE. C) GO TO 500
BK(I) = RATIO/EX
TWONU = TWONU+TWO
RATIO = TWONU
80 CONTINUE
NCALC = 1
GO TO 420
ELSE
C--------------------------------------------------------------------
C 1.0E-10 .LT. X .LE. 1.0
C--------------------------------------------------------------------
C = ONE
X2BY4 = EX*EX/FOUR
P0 = HALF*P0
Q0 = HALF*Q0
D1 = -ONE
D2 = ZERO
BK1 = ZERO
BK2 = ZERO
F1 = F0
F2 = P0
100 D1 = D1+TWO
D2 = D2+ONE
D3 = D1+D3
C = X2BY4*C/D2
F0 = (D2*F0+P0+Q0)/D3
P0 = P0/(D2-ENU)
Q0 = Q0/(D2+ENU)
T1 = C*F0
T2 = C*(P0-D2*F0)
BK1 = BK1+T1
BK2 = BK2+T2
IF ((ABS(T1/(F1+BK1)) .GT. EPS) .OR.
1 (ABS(T2/(F2+BK2)) .GT. EPS)) GO TO 100
BK1 = F1+BK1
BK2 = TWO*(F2+BK2)/EX
IF (IZE .EQ. 2) THEN
D1 = EXP(EX)
BK1 = BK1*D1
BK2 = BK2*D1
END IF
WMINF = ESTF(1)*EX+ESTF(2)
END IF
ELSE IF (EPS*EX .GT. ONE) THEN
C--------------------------------------------------------------------
C X .GT. ONE/EPS
C--------------------------------------------------------------------
NCALC = NB
BK1 = ONE / (D*SQRT(EX))
DO 110 I = 1, NB
BK(I) = BK1
110 CONTINUE
GO TO 500
ELSE
C--------------------------------------------------------------------
C X .GT. 1.0
C--------------------------------------------------------------------
TWOX = EX+EX
BLPHA = ZERO
RATIO = ZERO
IF (EX .LE. FOUR) THEN
C--------------------------------------------------------------------
C Calculation of K(ALPHA+1,X)/K(ALPHA,X), 1.0 .LE. X .LE. 4.0
C--------------------------------------------------------------------
D2 = AINT(ESTM(1)/EX+ESTM(2))
M = INT(D2)
D1 = D2+D2
D2 = D2-HALF
D2 = D2*D2
DO 120 I = 2,M
D1 = D1-TWO
D2 = D2-D1
RATIO = (D3+D2)/(TWOX+D1-RATIO)
120 CONTINUE
C--------------------------------------------------------------------
C Calculation of I(|ALPHA|,X) and I(|ALPHA|+1,X) by backward
C recurrence and K(ALPHA,X) from the wronskian
C--------------------------------------------------------------------
D2 = AINT(ESTM(3)*EX+ESTM(4))
M = INT(D2)
C = ABS(ENU)
D3 = C+C
D1 = D3-ONE
F1 = XMIN
F0 = (TWO*(C+D2)/EX+HALF*EX/(C+D2+ONE))*XMIN
DO 130 I = 3,M
D2 = D2-ONE
F2 = (D3+D2+D2)*F0
BLPHA = (ONE+D1/D2)*(F2+BLPHA)
F2 = F2/EX+F1
F1 = F0
F0 = F2
130 CONTINUE
F1 = (D3+TWO)*F0/EX+F1
D1 = ZERO
T1 = ONE
DO 140 I = 1,7
D1 = C*D1+P(I)
T1 = C*T1+Q(I)
140 CONTINUE
P0 = EXP(C*(A+C*(P(8)-C*D1/T1)-LOG(EX)))/EX
F2 = (C+HALF-RATIO)*F1/EX
BK1 = P0+(D3*F0-F2+F0+BLPHA)/(F2+F1+F0)*P0
IF (IZE .EQ. 1) BK1 = BK1*EXP(-EX)
WMINF = ESTF(3)*EX+ESTF(4)
ELSE
C--------------------------------------------------------------------
C Calculation of K(ALPHA,X) and K(ALPHA+1,X)/K(ALPHA,X), by backward
C recurrence, for X .GT. 4.0
C--------------------------------------------------------------------
DM = AINT(ESTM(5)/EX+ESTM(6))
M = INT(DM)
D2 = DM-HALF
D2 = D2*D2
D1 = DM+DM
DO 160 I = 2,M
DM = DM-ONE
D1 = D1-TWO
D2 = D2-D1
RATIO = (D3+D2)/(TWOX+D1-RATIO)
BLPHA = (RATIO+RATIO*BLPHA)/DM
160 CONTINUE
BK1 = ONE/((D+D*BLPHA)*SQRT(EX))
IF (IZE .EQ. 1) BK1 = BK1*EXP(-EX)
WMINF = ESTF(5)*(EX-ABS(EX-ESTF(7)))+ESTF(6)
END IF
C--------------------------------------------------------------------
C Calculation of K(ALPHA+1,X) from K(ALPHA,X) and
C K(ALPHA+1,X)/K(ALPHA,X)
C--------------------------------------------------------------------
BK2 = BK1+BK1*(ENU+HALF-RATIO)/EX
END IF
C--------------------------------------------------------------------
C Calculation of 'NCALC', K(ALPHA+I,X), I = 0, 1, ... , NCALC-1,
C K(ALPHA+I,X)/K(ALPHA+I-1,X), I = NCALC, NCALC+1, ... , NB-1
C--------------------------------------------------------------------
NCALC = NB
BK(1) = BK1
IF (IEND .EQ. 0) GO TO 500
J = 2-K
IF (J .GT. 0) BK(J) = BK2
IF (IEND .EQ. 1) GO TO 500
M = MIN(INT(WMINF-ENU),IEND)
DO 190 I = 2,M
T1 = BK1
BK1 = BK2
TWONU = TWONU+TWO
IF (EX .LT. ONE) THEN
IF (BK1 .GE. (XINF/TWONU)*EX) GO TO 195
GO TO 187
ELSE
IF (BK1/EX .GE. XINF/TWONU) GO TO 195
END IF
187 CONTINUE
BK2 = TWONU/EX*BK1+T1
ITEMP = I
J = J+1
IF (J .GT. 0) BK(J) = BK2
190 CONTINUE
195 M = ITEMP
IF (M .EQ. IEND) GO TO 500
RATIO = BK2/BK1
MPLUS1 = M+1
NCALC = -1
DO 410 I = MPLUS1,IEND
TWONU = TWONU+TWO
RATIO = TWONU/EX+ONE/RATIO
J = J+1
IF (J .GT. 1) THEN
BK(J) = RATIO
ELSE
IF (BK2 .GE. XINF/RATIO) GO TO 500
BK2 = RATIO*BK2
END IF
410 CONTINUE
NCALC = MAX(MPLUS1-K,1)
IF (NCALC .EQ. 1) BK(1) = BK2
IF (NB .EQ. 1) GO TO 500
420 J = NCALC+1
DO 430 I = J,NB
IF (BK(NCALC) .GE. XINF/BK(I)) GO TO 500
BK(I) = BK(NCALC)*BK(I)
NCALC = I
430 CONTINUE
END IF
500 RETURN
C---------- Last line of RKBESL ----------
END
|