1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
SUBROUTINE RYBESL(X,ALPHA,NB,BY,NCALC)
C----------------------------------------------------------------------
C
C This routine calculates Bessel functions Y SUB(N+ALPHA) (X)
C for non-negative argument X, and non-negative order N+ALPHA.
C
C
C Explanation of variables in the calling sequence
C
C X - Working precision non-negative real argument for which
C Y's are to be calculated.
C ALPHA - Working precision fractional part of order for which
C Y's are to be calculated. 0 .LE. ALPHA .LT. 1.0.
C NB - Integer number of functions to be calculated, NB .GT. 0.
C The first function calculated is of order ALPHA, and the
C last is of order (NB - 1 + ALPHA).
C BY - Working precision output vector of length NB. If the
C routine terminates normally (NCALC=NB), the vector BY
C contains the functions Y(ALPHA,X), ... , Y(NB-1+ALPHA,X),
C If (0 .LT. NCALC .LT. NB), BY(I) contains correct function
C values for I .LE. NCALC, and contains the ratios
C Y(ALPHA+I-1,X)/Y(ALPHA+I-2,X) for the rest of the array.
C NCALC - Integer output variable indicating possible errors.
C Before using the vector BY, the user should check that
C NCALC=NB, i.e., all orders have been calculated to
C the desired accuracy. See error returns below.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta = Radix for the floating-point system
C p = Number of significant base-beta digits in the
C significand of a floating-point number
C minexp = Smallest representable power of beta
C maxexp = Smallest power of beta that overflows
C EPS = beta ** (-p)
C DEL = Machine number below which sin(x)/x = 1; approximately
C SQRT(EPS).
C XMIN = Smallest acceptable argument for RBESY; approximately
C max(2*beta**minexp,2/XINF), rounded up
C XINF = Largest positive machine number; approximately
C beta**maxexp
C THRESH = Lower bound for use of the asymptotic form; approximately
C AINT(-LOG10(EPS/2.0))+1.0
C XLARGE = Upper bound on X; approximately 1/DEL, because the sine
C and cosine functions have lost about half of their
C precision at that point.
C
C
C Approximate values for some important machines are:
C
C beta p minexp maxexp EPS
C
C CRAY-1 (S.P.) 2 48 -8193 8191 3.55E-15
C Cyber 180/185
C under NOS (S.P.) 2 48 -975 1070 3.55E-15
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 2 24 -126 128 5.96E-8
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 2 53 -1022 1024 1.11D-16
C IBM 3033 (D.P.) 16 14 -65 63 1.39D-17
C VAX (S.P.) 2 24 -128 127 5.96E-8
C VAX D-Format (D.P.) 2 56 -128 127 1.39D-17
C VAX G-Format (D.P.) 2 53 -1024 1023 1.11D-16
C
C
C DEL XMIN XINF THRESH XLARGE
C
C CRAY-1 (S.P.) 5.0E-8 3.67E-2466 5.45E+2465 15.0E0 2.0E7
C Cyber 180/855
C under NOS (S.P.) 5.0E-8 6.28E-294 1.26E+322 15.0E0 2.0E7
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 1.0E-4 2.36E-38 3.40E+38 8.0E0 1.0E4
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 1.0D-8 4.46D-308 1.79D+308 16.0D0 1.0D8
C IBM 3033 (D.P.) 1.0D-8 2.77D-76 7.23D+75 17.0D0 1.0D8
C VAX (S.P.) 1.0E-4 1.18E-38 1.70E+38 8.0E0 1.0E4
C VAX D-Format (D.P.) 1.0D-9 1.18D-38 1.70D+38 17.0D0 1.0D9
C VAX G-Format (D.P.) 1.0D-8 2.23D-308 8.98D+307 16.0D0 1.0D8
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C In case of an error, NCALC .NE. NB, and not all Y's are
C calculated to the desired accuracy.
C
C NCALC .LT. -1: An argument is out of range. For example,
C NB .LE. 0, IZE is not 1 or 2, or IZE=1 and ABS(X) .GE.
C XMAX. In this case, BY(1) = 0.0, the remainder of the
C BY-vector is not calculated, and NCALC is set to
C MIN0(NB,0)-2 so that NCALC .NE. NB.
C NCALC = -1: Y(ALPHA,X) .GE. XINF. The requested function
C values are set to 0.0.
C 1 .LT. NCALC .LT. NB: Not all requested function values could
C be calculated accurately. BY(I) contains correct function
C values for I .LE. NCALC, and and the remaining NB-NCALC
C array elements contain 0.0.
C
C
C Intrinsic functions required are:
C
C DBLE, EXP, INT, MAX, MIN, REAL, SQRT
C
C
C Acknowledgement
C
C This program draws heavily on Temme's Algol program for Y(a,x)
C and Y(a+1,x) and on Campbell's programs for Y_nu(x). Temme's
C scheme is used for x < THRESH, and Campbell's scheme is used
C in the asymptotic region. Segments of code from both sources
C have been translated into Fortran 77, merged, and heavily modified.
C Modifications include parameterization of machine dependencies,
C use of a new approximation for ln(gamma(x)), and built-in
C protection against over/underflow.
C
C References: "Bessel functions J_nu(x) and Y_nu(x) of real
C order and real argument," Campbell, J. B.,
C Comp. Phy. Comm. 18, 1979, pp. 133-142.
C
C "On the numerical evaluation of the ordinary
C Bessel function of the second kind," Temme,
C N. M., J. Comput. Phys. 21, 1976, pp. 343-350.
C
C Latest modification: March 19, 1990
C
C Modified by: W. J. Cody
C Applied Mathematics Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C----------------------------------------------------------------------
INTEGER I,K,NA,NB,NCALC
CS REAL
DOUBLE PRECISION
1 ALFA,ALPHA,AYE,B,BY,C,CH,COSMU,D,DEL,DEN,DDIV,DIV,DMU,D1,D2,
2 E,EIGHT,EN,ENU,EN1,EPS,EVEN,EX,F,FIVPI,G,GAMMA,H,HALF,ODD,
3 ONBPI,ONE,ONE5,P,PA,PA1,PI,PIBY2,PIM5,Q,QA,QA1,Q0,R,S,SINMU,
4 SQ2BPI,TEN9,TERM,THREE,THRESH,TWO,TWOBYX,X,XINF,XLARGE,XMIN,
5 XNA,X2,YA,YA1,ZERO
DIMENSION BY(NB),CH(21)
C----------------------------------------------------------------------
C Mathematical constants
C FIVPI = 5*PI
C PIM5 = 5*PI - 15
C ONBPI = 1/PI
C PIBY2 = PI/2
C SQ2BPI = SQUARE ROOT OF 2/PI
C----------------------------------------------------------------------
CS DATA ZERO,HALF,ONE,TWO,THREE/0.0E0,0.5E0,1.0E0,2.0E0,3.0E0/
CS DATA EIGHT,ONE5,TEN9/8.0E0,15.0E0,1.9E1/
CS DATA FIVPI,PIBY2/1.5707963267948966192E1,1.5707963267948966192E0/
CS DATA PI,SQ2BPI/3.1415926535897932385E0,7.9788456080286535588E-1/
CS DATA PIM5,ONBPI/7.0796326794896619231E-1,3.1830988618379067154E-1/
DATA ZERO,HALF,ONE,TWO,THREE/0.0D0,0.5D0,1.0D0,2.0D0,3.0D0/
DATA EIGHT,ONE5,TEN9/8.0D0,15.0D0,1.9D1/
DATA FIVPI,PIBY2/1.5707963267948966192D1,1.5707963267948966192D0/
DATA PI,SQ2BPI/3.1415926535897932385D0,7.9788456080286535588D-1/
DATA PIM5,ONBPI/7.0796326794896619231D-1,3.1830988618379067154D-1/
C----------------------------------------------------------------------
C Machine-dependent constants
C----------------------------------------------------------------------
CS DATA DEL,XMIN,XINF,EPS/1.0E-4,2.36E-38,3.40E38,5.96E-8/
CS DATA THRESH,XLARGE/8.0E0,1.0E4/
DATA DEL,XMIN,XINF,EPS/1.0D-8,4.46D-308,1.79D308,1.11D-16/
DATA THRESH,XLARGE/16.0D0,1.0D8/
C----------------------------------------------------------------------
C Coefficients for Chebyshev polynomial expansion of
C 1/gamma(1-x), abs(x) .le. .5
C----------------------------------------------------------------------
CS DATA CH/-0.67735241822398840964E-23,-0.61455180116049879894E-22,
CS 1 0.29017595056104745456E-20, 0.13639417919073099464E-18,
CS 2 0.23826220476859635824E-17,-0.90642907957550702534E-17,
CS 3 -0.14943667065169001769E-14,-0.33919078305362211264E-13,
CS 4 -0.17023776642512729175E-12, 0.91609750938768647911E-11,
CS 5 0.24230957900482704055E-09, 0.17451364971382984243E-08,
CS 6 -0.33126119768180852711E-07,-0.86592079961391259661E-06,
CS 7 -0.49717367041957398581E-05, 0.76309597585908126618E-04,
CS 8 0.12719271366545622927E-02, 0.17063050710955562222E-02,
CS 9 -0.76852840844786673690E-01,-0.28387654227602353814E+00,
CS A 0.92187029365045265648E+00/
DATA CH/-0.67735241822398840964D-23,-0.61455180116049879894D-22,
1 0.29017595056104745456D-20, 0.13639417919073099464D-18,
2 0.23826220476859635824D-17,-0.90642907957550702534D-17,
3 -0.14943667065169001769D-14,-0.33919078305362211264D-13,
4 -0.17023776642512729175D-12, 0.91609750938768647911D-11,
5 0.24230957900482704055D-09, 0.17451364971382984243D-08,
6 -0.33126119768180852711D-07,-0.86592079961391259661D-06,
7 -0.49717367041957398581D-05, 0.76309597585908126618D-04,
8 0.12719271366545622927D-02, 0.17063050710955562222D-02,
9 -0.76852840844786673690D-01,-0.28387654227602353814D+00,
A 0.92187029365045265648D+00/
C----------------------------------------------------------------------
EX = X
ENU = ALPHA
IF ((NB .GT. 0) .AND. (X .GE. XMIN) .AND. (EX .LT. XLARGE)
1 .AND. (ENU .GE. ZERO) .AND. (ENU .LT. ONE)) THEN
XNA = AINT(ENU+HALF)
NA = INT(XNA)
IF (NA .EQ. 1) ENU = ENU - XNA
IF (ENU .EQ. -HALF) THEN
P = SQ2BPI/SQRT(EX)
YA = P * SIN(EX)
YA1 = -P * COS(EX)
ELSE IF (EX .LT. THREE) THEN
C----------------------------------------------------------------------
C Use Temme's scheme for small X
C----------------------------------------------------------------------
B = EX * HALF
D = -LOG(B)
F = ENU * D
E = B**(-ENU)
IF (ABS(ENU) .LT. DEL) THEN
C = ONBPI
ELSE
C = ENU / SIN(ENU*PI)
END IF
C----------------------------------------------------------------------
C Computation of sinh(f)/f
C----------------------------------------------------------------------
IF (ABS(F) .LT. ONE) THEN
X2 = F*F
EN = TEN9
S = ONE
DO 80 I = 1, 9
S = S*X2/EN/(EN-ONE)+ONE
EN = EN - TWO
80 CONTINUE
ELSE
S = (E - ONE/E) * HALF / F
END IF
C----------------------------------------------------------------------
C Computation of 1/gamma(1-a) using Chebyshev polynomials
C----------------------------------------------------------------------
X2 = ENU*ENU*EIGHT
AYE = CH(1)
EVEN = ZERO
ALFA = CH(2)
ODD = ZERO
DO 40 I = 3, 19, 2
EVEN = -(AYE+AYE+EVEN)
AYE = -EVEN*X2 - AYE + CH(I)
ODD = -(ALFA+ALFA+ODD)
ALFA = -ODD*X2 - ALFA + CH(I+1)
40 CONTINUE
EVEN = (EVEN*HALF+AYE)*X2 - AYE + CH(21)
ODD = (ODD+ALFA)*TWO
GAMMA = ODD*ENU + EVEN
C----------------------------------------------------------------------
C End of computation of 1/gamma(1-a)
C----------------------------------------------------------------------
G = E * GAMMA
E = (E + ONE/E) * HALF
F = TWO*C*(ODD*E+EVEN*S*D)
E = ENU*ENU
P = G*C
Q = ONBPI / G
C = ENU*PIBY2
IF (ABS(C) .LT. DEL) THEN
R = ONE
ELSE
R = SIN(C)/C
END IF
R = PI*C*R*R
C = ONE
D = - B*B
H = ZERO
YA = F + R*Q
YA1 = P
EN = ZERO
100 EN = EN + ONE
IF (ABS(G/(ONE+ABS(YA)))
1 + ABS(H/(ONE+ABS(YA1))) .GT. EPS) THEN
F = (F*EN+P+Q)/(EN*EN-E)
C = C * D/EN
P = P/(EN-ENU)
Q = Q/(EN+ENU)
G = C*(F+R*Q)
H = C*P - EN*G
YA = YA + G
YA1 = YA1+H
GO TO 100
END IF
YA = -YA
YA1 = -YA1/B
ELSE IF (EX .LT. THRESH) THEN
C----------------------------------------------------------------------
C Use Temme's scheme for moderate X
C----------------------------------------------------------------------
C = (HALF-ENU)*(HALF+ENU)
B = EX + EX
E = (EX*ONBPI*COS(ENU*PI)/EPS)
E = E*E
P = ONE
Q = -EX
R = ONE + EX*EX
S = R
EN = TWO
200 IF (R*EN*EN .LT. E) THEN
EN1 = EN+ONE
D = (EN-ONE+C/EN)/S
P = (EN+EN-P*D)/EN1
Q = (-B+Q*D)/EN1
S = P*P + Q*Q
R = R*S
EN = EN1
GO TO 200
END IF
F = P/S
P = F
G = -Q/S
Q = G
220 EN = EN - ONE
IF (EN .GT. ZERO) THEN
R = EN1*(TWO-P)-TWO
S = B + EN1*Q
D = (EN-ONE+C/EN)/(R*R+S*S)
P = D*R
Q = D*S
E = F + ONE
F = P*E - G*Q
G = Q*E + P*G
EN1 = EN
GO TO 220
END IF
F = ONE + F
D = F*F + G*G
PA = F/D
QA = -G/D
D = ENU + HALF -P
Q = Q + EX
PA1 = (PA*Q-QA*D)/EX
QA1 = (QA*Q+PA*D)/EX
B = EX - PIBY2*(ENU+HALF)
C = COS(B)
S = SIN(B)
D = SQ2BPI/SQRT(EX)
YA = D*(PA*S+QA*C)
YA1 = D*(QA1*S-PA1*C)
ELSE
C----------------------------------------------------------------------
C Use Campbell's asymptotic scheme.
C----------------------------------------------------------------------
NA = 0
D1 = AINT(EX/FIVPI)
I = INT(D1)
DMU = ((EX-ONE5*D1)-D1*PIM5)-(ALPHA+HALF)*PIBY2
IF (I-2*(I/2) .EQ. 0) THEN
COSMU = COS(DMU)
SINMU = SIN(DMU)
ELSE
COSMU = -COS(DMU)
SINMU = -SIN(DMU)
END IF
DDIV = EIGHT * EX
DMU = ALPHA
DEN = SQRT(EX)
DO 350 K = 1, 2
P = COSMU
COSMU = SINMU
SINMU = -P
D1 = (TWO*DMU-ONE)*(TWO*DMU+ONE)
D2 = ZERO
DIV = DDIV
P = ZERO
Q = ZERO
Q0 = D1/DIV
TERM = Q0
DO 310 I = 2, 20
D2 = D2 + EIGHT
D1 = D1 - D2
DIV = DIV + DDIV
TERM = -TERM*D1/DIV
P = P + TERM
D2 = D2 + EIGHT
D1 = D1 - D2
DIV = DIV + DDIV
TERM = TERM*D1/DIV
Q = Q + TERM
IF (ABS(TERM) .LE. EPS) GO TO 320
310 CONTINUE
320 P = P + ONE
Q = Q + Q0
IF (K .EQ. 1) THEN
YA = SQ2BPI * (P*COSMU-Q*SINMU) / DEN
ELSE
YA1 = SQ2BPI * (P*COSMU-Q*SINMU) / DEN
END IF
DMU = DMU + ONE
350 CONTINUE
END IF
IF (NA .EQ. 1) THEN
H = TWO*(ENU+ONE)/EX
IF (H .GT. ONE) THEN
IF (ABS(YA1) .GT. XINF/H) THEN
H = ZERO
YA = ZERO
END IF
END IF
H = H*YA1 - YA
YA = YA1
YA1 = H
END IF
C----------------------------------------------------------------------
C Now have first one or two Y's
C----------------------------------------------------------------------
BY(1) = YA
BY(2) = YA1
IF (YA1 .EQ. ZERO) THEN
NCALC = 1
ELSE
AYE = ONE + ALPHA
TWOBYX = TWO/EX
NCALC = 2
DO 400 I = 3, NB
IF (TWOBYX .LT. ONE) THEN
IF (ABS(BY(I-1))*TWOBYX .GE. XINF/AYE)
1 GO TO 450
ELSE
IF (ABS(BY(I-1)) .GE. XINF/AYE/TWOBYX )
1 GO TO 450
END IF
BY(I) = TWOBYX*AYE*BY(I-1) - BY(I-2)
AYE = AYE + ONE
NCALC = NCALC + 1
400 CONTINUE
END IF
450 DO 460 I = NCALC+1, NB
BY(I) = ZERO
460 CONTINUE
ELSE
BY(1) = ZERO
NCALC = MIN(NB,0) - 1
END IF
900 RETURN
C---------- Last line of RYBESL ----------
END
|