1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/*
* a routine for n-dim linear interpolation together
* with its utility routines
*
* AUTHOR
* Bruno Pincon <Bruno.Pincon@iecn.u-nancy.fr>
*/
#include "../stack-c.h"
#include <math.h>
enum {NOT_A_KNOT, NATURAL, CLAMPED, PERIODIC, FAST, FAST_PERIODIC,
MONOTONE, BY_ZERO, C0, LINEAR, BY_NAN};
#if WIN32
extern int C2F(isanan)();
#endif
static int isearch(double t, double x[], int n)
{
/* PURPOSE
* x[0..n-1] being an array (with strict increasing order and n >=2)
* representing intervals, this routine return i such that :
*
* x[i] <= t <= x[i+1]
*
* and -1 if t is not in [x[0], x[n-1]]
*/
int i1, i2, i;
if ( x[0] <= t && t <= x[n-1] )
{
i1 = 0; i2 = n-1;
while ( i2 - i1 > 1 )
{
i = (i1 + i2)/2;
if ( t <= x[i] )
i2 = i;
else
i1 = i;
}
return (i1);
}
else
return (-1);
}
static void fast_int_search(double xx, double x[], int nx, int *i)
{
if ( *i == -1 )
*i = isearch(xx, x, nx);
else if ( ! (x[*i] <= xx && xx <= x[*i+1]) )
*i = isearch(xx, x, nx);
}
static void coord_by_periodicity(double *t, double x[], int n, int *i)
{
/*
* PURPOSE
* recompute t such that t in [x[0], x[n-1]] by periodicity :
* and then the interval i of this new t
*/
double r, L;
L = x[n-1] - x[0];
r = (*t - x[0]) / L;
if (r >= 0.0)
*t = x[0] + (r - floor(r))*L;
else
*t = x[n-1] + (r - ceil(r))*L;
/* some cautions in case of roundoff errors (is necessary ?) */
if (*t < x[0])
{
*t = x[0];
*i = 0;
}
else if (*t > x[n-1])
{
*t = x[n-1];
*i = n-2;
}
else
*i = isearch(*t, x, n);
}
static double return_a_nan()
{
static int first = 1;
static double nan = 1.0;
if ( first )
{
nan = (nan - (double) first)/(nan - (double) first);
first = 0;
}
return (nan);
}
void nlinear_interp(double **x , double val[], int dim[], int n,
double **xp, double yp[], int np, int outmode,
double u[], double v[], int ad[], int k[])
{
/* interpolation lineaire nb_dim-dimensionnelle
* --------------------------------------------
interface scilab ?
yp = linear_interpn(xp1, ..., xpN, x1, ..., xN, val, outmode)
* x[j][] : the grid abscissae in the dim j
* dim[j] : nb of points in the dim j
* n : number of dimension
* val[] : array of the grid node values, for instance if nbdim = 3
* and dim = [nx ny nz] then val(i,j,k) is stored in
* i + nx( j + ny k )
* xp[][] : the coordinates where we have to interpolate
* the coordinate of the i th point are stored
* at xp[0][i] ..... xp[n-1][i]
* yp[] : the result (an array 0...np-1)
* np : nb of points for the evaluation
* outmode: specify the method of evaluation when a point is
* outside the grid
* u, v, ad, k : work arrays
*/
int i, j, l, p, temp, b,/* toto,*/ two_p_n;
double xx;
/*
* calcul des decalages d'indices pour retrouver les valeurs
* de l'hypercube encadrant le point interpoler
*/
ad[0] = 0; ad[1] = 1;
temp = 1 ; p = 1;
for ( j = 0; j < n-1; j++)
{
temp = temp * dim[j];
p = 2*p;
for ( i = 0; i < p; i++ )
ad[p+i] = ad[i] + temp;
};
/* a ce niveau on a p = 2^(n-1) */
two_p_n = 2*p;
/* initialisation pour recherche d'intervalle rapide */
for ( j = 0; j < n; j++ ) k[j] = -1;
for ( i = 0; i < np; i++ )
{
/* interpolation du i eme point */
/* 1 - recherche des intervalles */
for ( j = 0; j < n; j++ )
{
xx = xp[j][i];
if ( C2F(isanan)(&xx) )
{
v[0] = return_a_nan(); goto fin;
}
fast_int_search(xx, x[j], dim[j], &(k[j]));
if ( k[j] == -1 ) /* le point est a l'exterieur */
switch (outmode)
{
case BY_NAN :
v[0] = return_a_nan();
goto fin;
case BY_ZERO :
v[0] = 0.0;
goto fin;
case NATURAL :
if (xx < x[j][0])
k[j] = 0;
else
k[j] = dim[j]-2;
break;
case C0 :
if (xx < x[j][0])
{
u[j] = 0.0; k[j] = 0;
}
else
{
u[j] = 1.0; k[j] = dim[j]-2;
}
continue;
case PERIODIC :
coord_by_periodicity(&xx, x[j], dim[j], &(k[j]));
break;
}
u[j] = (xx - x[j][k[j]])/( x[j][k[j]+1] - x[j][k[j]]); /* coord bary */
}
/* 2 - calcul de l'indice de base */
b = k[n-1];
for ( j = n-2; j >= 0; j-- )
b = k[j] + dim[j]*b;
/* 3 - mise des valeurs de l'hypercube dans v */
for ( j = 0; j < two_p_n; j++ )
v[j] = val[b + ad[j]];
/* 4 - interpolation */
temp = 1; p = two_p_n;
for ( j = 0; j < n ; j++ )
{
for ( l = 0; l < two_p_n; l+=2*temp)
{
v[l] = v[l]*(1.0 - u[j]) + v[l+temp]*u[j];
}
p = p/2;
temp = 2*temp;
}
/* 5 - on met le resultat a sa place */
fin:
yp[i] = v[0];
}
}
|