1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
subroutine watan(xr,xi,yr,yi)
c
c PURPOSE
c watan compute the arctangent of a complex number
c y = yr + i yi = atan(x), x = xr + i xi
c
c CALLING LIST / PARAMETERS
c subroutine watan(xr,xi,yr,yi)
c double precision xr,xi,yr,yi
c
c xr,xi: real and imaginary parts of the complex number
c yr,yi: real and imaginary parts of the result
c yr,yi may have the same memory cases than xr et xi
c
c COPYRIGHT (C) 2001 Bruno Pincon and Lydia van Dijk
c Written by Bruno Pincon <Bruno.Pincon@iecn.u-nancy.fr> so
c as to get more precision. Also to fix the
c behavior at the singular points and at the branch cuts.
c Polished by Lydia van Dijk
c <lvandijk@hammersmith-consulting.com>
c
c CHANGES : - (Bruno on 2001 May 22) for ysptrk use a
c minimax polynome to enlarge the special
c evaluation zone |s| < SLIM. Also rename
c this function as lnp1m1.
c - (Bruno on 2001 June 7) better handling
c of spurious over/underflow ; remove
c the call to pythag ; better accuracy
c in the real part for z near +-i
c
c EXTERNALS FUNCTIONS
c dlamch
c lnp1m1 (at the end of this file)
c
c ALGORITHM : noting z = a + i*b, we have:
c Z = yr + yi*b = arctan(z) = (i/2) * log( (i+z)/(i-z) )
c
c This function has two branch points at +i and -i and the
c chosen branch cuts are the two half-straight lines
c D1 = [i, i*oo) and D2 = (-i*oo, i]. The function is then
c analytic in C \ (D1 U D2)).
c
c From the definition it follows that:
c
c yr = 0.5 Arg ( (i+z)/(i-z) ) (1)
c yi = 0.5 log (|(i+z)/(i-z)|) (2)
c
c so lim (z -> +- i) yr = undefined (and Nan is logical)
c lim (z -> +i) yi = +oo
c lim (z -> -i) yi = -oo
c
c The real part of arctan(z) is discontinuous across D1 and D2
c and we impose the following definitions:
c if imag(z) > 1 then
c Arg(arctan(z)) = pi/2 (=lim real(z) -> 0+)
c if imag(z) < 1 then
c Arg(arctan(z)) = -pi/2 (=lim real(z) -> 0-)
c
c
c Basic evaluation: if we write (i+z)/(i-z) using
c z = a + i*b, we get:
c
c i+z 1-(a**2+b**2) + i*(2a)
c --- = ----------------------
c i-z a**2 + (1-b)**2
c
c then, with r2 = |z|^2 = a**2 + b**2 :
c
c yr = 0.5 * Arg(1-r2 + (2*a)*i)
c = 0.5 * atan2(2a, (1-r2)) (3)
c
c This formula is changed when r2 > RMAX (max pos float)
c and also when |1-r2| and |a| are near 0 (see comments
c in the code).
c
c After some math:
c
c yi = 0.25 * log( (a**2 + (b + 1)**2) /
c (a**2 + (b - 1)**2) ) (4)
c
c Evaluation for "big" |z|
c ------------------------
c
c If |z| is "big", the direct evaluation of yi by (4) may
c suffer of innaccuracies and of spurious overflow. Noting
c that s = 2 b / (1 + |z|**2), we have:
c
c yi = 0.25 log ( (1 + s)/(1 - s) ) (5)
c
c 3 5
c yi = 0.25*( 2 * ( s + 1/3 s + 1/5 s + ... ))
c
c yi = 0.25 * lnp1m1(s) if |s| < SLIM
c
c So if |s| is less than SLIM we switch to a special
c evaluation done by the function lnp1m1. The
c threshold value SLIM is choosen by experiment
c (with the Pari-gp software). For |s|
c "very small" we used a truncated taylor dvp,
c else a minimax polynome (see lnp1m1).
c
c To avoid spurious overflows (which result in spurious
c underflows for s) in computing s with s= 2 b / (1 + |z|**2)
c when |z|^2 > RMAX (max positive float) we use :
c
c s = 2d0 / ( (a/b)*a + b )
c
c but if |b| = Inf this formula leads to NaN when
c |a| is also Inf. As we have :
c
c |s| <= 2 / |b|
c
c we impose simply : s = 0 when |b| = Inf
c
c Evaluation for z very near to i or -i:
c --------------------------------------
c Floating point numbers of the form a+i or a-i with 0 <
c a**2 < tiny (approximately 1d-308) may lead to underflow
c (i.e., a**2 = 0) and the logarithm will break formula (4).
c So we switch to the following formulas:
c
c If b = +-1 and |a| < sqrt(tiny) approximately 1d-150 (say)
c then (by using that a**2 + 4 = 4 in machine for such a):
c
c yi = 0.5 * log( 2/|a| ) for b=1
c
c yi = 0.5 * log( |a|/2 ) for b=-1
c
c finally: yi = 0.5 * sign(b) * log( 2/|a| )
c yi = 0.5 * sign(b) * (log(2) - log(|a|)) (6)
c
c The last trick is to avoid overflow for |a|=tiny! In fact
c this formula may be used until a**2 + 4 = 4 so that the
c threshold value may be larger.
c
implicit none
c
include '../stack.h'
c
double precision xr, xi, yr, yi
c EXTERNAL
external dlamch, lnp1m1
double precision dlamch, lnp1m1
c
double precision a, b, r2, s, SLIM, ALIM, TOL, LN2
parameter (SLIM = 0.2d0,
$ ALIM = 1.d-150,
$ TOL = 0.3d0,
$ LN2 = 0.69314718055994531d0)
c STATIC VAR
logical first
double precision RMAX, HALFPI
save first
data first /.true./
save RMAX, HALFPI
if (first) then
RMAX = dlamch('O')
first = .false.
HALFPI = 2.d0*atan(1.d0)
endif
c Avoid problems due to sharing the same memory locations by
c xr, yr and xi, yi.
a = xr
b = xi
c
if (b .eq. 0d0) then
c z is real
yr = atan(xr)
yi = 0d0
else
c z is complex
c (1) Compute the imaginary part of arctan(z)
r2 = a*a + b*b
if (r2 .gt. RMAX) then
if ( abs(b) .gt. RMAX ) then
c |b| is Inf => s = 0
s = 0.d0
else
c try to avoid the spurious underflow in s when |b| is not
c negligible with respect to |a|
s = 1d0 / ( ((0.5d0*a)/b)*a + 0.5d0*b )
endif
else
s = 2d0*b / (1d0 + r2)
endif
if (abs(s) .lt. SLIM) then
c s is small: |s| < SLIM <=> |z| outside the following disks:
c D+ = D(center = [0; 1/slim], radius = sqrt(1/slim**2 - 1)) if b > 0
c D- = D(center = [0; -1/slim], radius = sqrt(1/slim**2 - 1)) if b < 0
c use the special evaluation of log((1+s)/(1-s)) (5)
yi = 0.25d0*lnp1m1(s)
else
c |s| >= SLIM => |z| is inside D+ or D-
if ((abs(b) .eq. 1d0) .and. (abs(a) .le. ALIM)) then
c z is very near +- i : use formula (6)
yi = sign(0.5d0, b) * (LN2 - log(abs(a)))
else
c use formula (4)
yi = 0.25d0 * log( (a*a + (b + 1d0)*(b + 1d0)) /
$ (a*a + (b - 1d0)*(b - 1d0)) )
endif
endif
c (2) Compute the real part of arctan(z)
if (a .eq. 0d0) then
c z is purely imaginary
if (abs(b) .gt. 1d0) then
c got sign(b) * pi/2
yr = sign(1d0,b) * HALFPI
elseif (abs(b) .eq. 1d0) then
c got a Nan with 0/0
yr = (a - a) / (a - a)
else
yr = 0d0
endif
elseif (r2 .gt. RMAX) then
c yr is necessarily very near sign(a)* pi/2
yr = sign(1.d0, a) * HALFPI
elseif ( abs(1.d0 - r2) + abs(a) .le.TOL ) then
c |b| is very near 1 (and a is near 0) some
c cancellation occur in the (next) generic formula
yr = 0.5d0 * atan2(2d0*a, (1.d0-b)*(1.d0+b) - a*a)
else
c generic formula
yr = 0.5d0 * atan2(2d0*a, 1d0 - r2)
endif
endif
end
double precision function lnp1m1(s)
implicit none
double precision s
c
c PURPOSE : Compute v = log ( (1 + s)/(1 - s) )
c for small s, this is for |s| < SLIM = 0.20
c
c ALGORITHM :
c 1/ if |s| is "very small" we use a truncated
c taylor dvp (by keeping 3 terms) from :
c 2 4 6
c t = 2 * s * ( 1 + 1/3 s + 1/5 s + [ 1/7 s + ....] )
c 2 4
c t = 2 * s * ( 1 + 1/3 s + 1/5 s + er)
c
c The limit E until we use this formula may be simply
c gotten so that the negliged part er is such that :
c 2 4
c (#) er <= epsm * ( 1 + 1/3 s + 1/5 s ) for all |s|<= E
c
c As er = 1/7 s^6 + 1/9 s^8 + ...
c er <= 1/7 * s^6 ( 1 + s^2 + s^4 + ...) = 1/7 s^6/(1-s^2)
c
c the inequality (#) is forced if :
c
c 1/7 s^6 / (1-s^2) <= epsm * ( 1 + 1/3 s^2 + 1/5 s^4 )
c
c s^6 <= 7 epsm * (1 - 2/3 s^2 - 3/15 s^4 - 1/5 s^6)
c
c So that E is very near (7 epsm)^(1/6) (approximately 3.032d-3):
c
c 2/ For larger |s| we used a minimax polynome :
c
c yi = s * (2 + d3 s^3 + d5 s^5 .... + d13 s^13 + d15 s^15)
c
c This polynome was computed (by some remes algorithm) following
c (*) the sin(x) example (p 39) of the book :
c
c "ELEMENTARY FUNCTIONS"
c "Algorithms and implementation"
c J.M. Muller (Birkhauser)
c
c (*) without the additionnal raffinement to get the first coefs
c very near floating point numbers)
c
double precision s2
double precision E, C3, C5
parameter (E = 3.032d-3, C3 = 2d0 / 3d0, C5 = 2d0 / 5d0)
c minimax poly coefs
double precision D3, D5, D7, D9, D11, D13, D15
parameter (
$ D3 = 0.66666666666672679472d0, D5 = 0.39999999996176889299d0,
$ D7 = 0.28571429392829380980d0, D9 = 0.22222138684562683797d0,
$ D11= 0.18186349187499222459d0, D13= 0.15250315884469364710d0,
$ D15= 0.15367270224757008114d0 )
s2 = s * s
if (abs(s) .le. E) then
lnp1m1 = s * (2d0 + s2*(C3 + C5*s2))
else
lnp1m1 = s * (2.d0 + s2*(D3 + s2*(D5 + s2*(
$ D7 + s2*(D9 + s2*(D11 + s2*(D13 + s2*D15)))))))
endif
end
c
c a log(1+x) function for scilab ....
c
c
double precision function logp1(x)
implicit none
double precision x
double precision g
double precision a, b
parameter ( a = -1d0/3d0,
$ b = 0.5d0 )
double precision lnp1m1
external lnp1m1
if ( x .lt. -1.d0 ) then
c got NaN
logp1 = (x - x)/(x - x)
elseif ( a .le. x .and. x .le. b ) then
c use the function log((1+g)/(1-g)) with g = x/(x + 2)
g = x/(x + 2.d0)
logp1 = lnp1m1(g)
else
c use the standard formula
logp1 = log(x + 1.d0)
endif
end
|