File: zairy.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (404 lines) | stat: -rw-r--r-- 15,229 bytes parent folder | download | duplicates (30)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
*DECK ZAIRY
      SUBROUTINE ZAIRY (ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
C***BEGIN PROLOGUE  ZAIRY
C***PURPOSE  Compute the Airy function Ai(z) or its derivative dAi/dz
C            for complex argument z.  A scaling option is available
C            to help avoid underflow and overflow.
C***LIBRARY   SLATEC
C***CATEGORY  C10D
C***TYPE      COMPLEX (CAIRY-C, ZAIRY-C)
C***KEYWORDS  AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD,
C             BESSEL FUNCTION OF ORDER TWO THIRDS
C***AUTHOR  Amos, D. E., (SNL)
C***DESCRIPTION
C
C                      ***A DOUBLE PRECISION ROUTINE***
C         On KODE=1, ZAIRY computes the complex Airy function Ai(z)
C         or its derivative dAi/dz on ID=0 or ID=1 respectively. On
C         KODE=2, a scaling option exp(zeta)*Ai(z) or exp(zeta)*dAi/dz
C         is provided to remove the exponential decay in -pi/3<arg(z)
C         <pi/3 and the exponential growth in pi/3<abs(arg(z))<pi where
C         zeta=(2/3)*z**(3/2).
C
C         While the Airy functions Ai(z) and dAi/dz are analytic in
C         the whole z-plane, the corresponding scaled functions defined
C         for KODE=2 have a cut along the negative real axis.
C
C         Input
C           ZR     - DOUBLE PRECISION real part of argument Z
C           ZI     - DOUBLE PRECISION imag part of argument Z
C           ID     - Order of derivative, ID=0 or ID=1
C           KODE   - A parameter to indicate the scaling option
C                    KODE=1  returns
C                            AI=Ai(z)  on ID=0
C                            AI=dAi/dz on ID=1
C                            at z=Z
C                        =2  returns
C                            AI=exp(zeta)*Ai(z)  on ID=0
C                            AI=exp(zeta)*dAi/dz on ID=1
C                            at z=Z where zeta=(2/3)*z**(3/2)
C
C         Output
C           AIR    - DOUBLE PRECISION real part of result
C           AII    - DOUBLE PRECISION imag part of result
C           NZ     - Underflow indicator
C                    NZ=0    Normal return
C                    NZ=1    AI=0 due to underflow in
C                            -pi/3<arg(Z)<pi/3 on KODE=1
C           IERR   - Error flag
C                    IERR=0  Normal return     - COMPUTATION COMPLETED
C                    IERR=1  Input error       - NO COMPUTATION
C                    IERR=2  Overflow          - NO COMPUTATION
C                            (Re(Z) too large with KODE=1)
C                    IERR=3  Precision warning - COMPUTATION COMPLETED
C                            (Result has less than half precision)
C                    IERR=4  Precision error   - NO COMPUTATION
C                            (Result has no precision)
C                    IERR=5  Algorithmic error - NO COMPUTATION
C                            (Termination condition not met)
C
C *Long Description:
C
C         Ai(z) and dAi/dz are computed from K Bessel functions by
C
C                Ai(z) =  c*sqrt(z)*K(1/3,zeta)
C               dAi/dz = -c*   z   *K(2/3,zeta)
C                    c =  1/(pi*sqrt(3))
C                 zeta =  (2/3)*z**(3/2)
C
C         when abs(z)>1 and from power series when abs(z)<=1.
C
C         In most complex variable computation, one must evaluate ele-
C         mentary functions.  When the magnitude of Z is large, losses
C         of significance by argument reduction occur.  Consequently, if
C         the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR),
C         then losses exceeding half precision are likely and an error
C         flag IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is
C         double precision unit roundoff limited to 18 digits precision.
C         Also, if the magnitude of ZETA is larger than U2=0.5/UR, then
C         all significance is lost and IERR=4.  In order to use the INT
C         function, ZETA must be further restricted not to exceed
C         U3=I1MACH(9)=LARGEST INTEGER.  Thus, the magnitude of ZETA
C         must be restricted by MIN(U2,U3).  In IEEE arithmetic, U1,U2,
C         and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single
C         precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision.
C         This makes U2 limiting is single precision and U3 limiting
C         in double precision.  This means that the magnitude of Z
C         cannot exceed approximately 3.4E+4 in single precision and
C         2.1E+6 in double precision.  This also means that one can
C         expect to retain, in the worst cases on 32-bit machines,
C         no digits in single precision and only 6 digits in double
C         precision.
C
C         The approximate relative error in the magnitude of a complex
C         Bessel function can be expressed as P*10**S where P=MAX(UNIT
C         ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
C         sents the increase in error due to argument reduction in the
C         elementary functions.  Here, S=MAX(1,ABS(LOG10(ABS(Z))),
C         ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
C         ABS(Z),ABS(EXPONENT OF FNU)) ).  However, the phase angle may
C         have only absolute accuracy.  This is most likely to occur
C         when one component (in magnitude) is larger than the other by
C         several orders of magnitude.  If one component is 10**K larger
C         than the other, then one can expect only MAX(ABS(LOG10(P))-K,
C         0) significant digits; or, stated another way, when K exceeds
C         the exponent of P, no significant digits remain in the smaller
C         component.  However, the phase angle retains absolute accuracy
C         because, in complex arithmetic with precision P, the smaller
C         component will not (as a rule) decrease below P times the
C         magnitude of the larger component. In these extreme cases,
C         the principal phase angle is on the order of +P, -P, PI/2-P,
C         or -PI/2+P.
C
C***REFERENCES  1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
C                 matical Functions, National Bureau of Standards
C                 Applied Mathematics Series 55, U. S. Department
C                 of Commerce, Tenth Printing (1972) or later.
C               2. D. E. Amos, Computation of Bessel Functions of
C                 Complex Argument and Large Order, Report SAND83-0643,
C                 Sandia National Laboratories, Albuquerque, NM, May
C                 1983.
C               3. D. E. Amos, A Subroutine Package for Bessel Functions
C                 of a Complex Argument and Nonnegative Order, Report
C                 SAND85-1018, Sandia National Laboratory, Albuquerque,
C                 NM, May 1985.
C               4. D. E. Amos, A portable package for Bessel functions
C                 of a complex argument and nonnegative order, ACM
C                 Transactions on Mathematical Software, 12 (September
C                 1986), pp. 265-273.
C
C***ROUTINES CALLED  D1MACH, I1MACH, ZABS, ZACAI, ZBKNU, ZEXP, ZSQRT
C***REVISION HISTORY  (YYMMDD)
C   830501  DATE WRITTEN
C   890801  REVISION DATE from Version 3.2
C   910415  Prologue converted to Version 4.0 format.  (BAB)
C   920128  Category corrected.  (WRB)
C   920811  Prologue revised.  (DWL)
C   930122  Added ZEXP and ZSQRT to EXTERNAL statement.  (RWC)
C***END PROLOGUE  ZAIRY
C     COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
      DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
     * CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
     * DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
     * S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
     * ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS, ALAZ, BB
      INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
      DIMENSION CYR(1), CYI(1)
      EXTERNAL ZABS, ZEXP, ZSQRT
      DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
     * 3.55028053887817240D-01,2.58819403792806799D-01,
     * 1.83776298473930683D-01/
      DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/
C***FIRST EXECUTABLE STATEMENT  ZAIRY
      IERR = 0
      NZ=0
      IF (ID.LT.0 .OR. ID.GT.1) IERR=1
      IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
      IF (IERR.NE.0) RETURN
      AZ = ZABS(ZR,ZI)
      TOL = MAX(D1MACH(4),1.0D-18)
      FID = ID
      IF (AZ.GT.1.0D0) GO TO 70
C-----------------------------------------------------------------------
C     POWER SERIES FOR ABS(Z).LE.1.
C-----------------------------------------------------------------------
      S1R = CONER
      S1I = CONEI
      S2R = CONER
      S2I = CONEI
      IF (AZ.LT.TOL) GO TO 170
      AA = AZ*AZ
      IF (AA.LT.TOL/AZ) GO TO 40
      TRM1R = CONER
      TRM1I = CONEI
      TRM2R = CONER
      TRM2I = CONEI
      ATRM = 1.0D0
      STR = ZR*ZR - ZI*ZI
      STI = ZR*ZI + ZI*ZR
      Z3R = STR*ZR - STI*ZI
      Z3I = STR*ZI + STI*ZR
      AZ3 = AZ*AA
      AK = 2.0D0 + FID
      BK = 3.0D0 - FID - FID
      CK = 4.0D0 - FID
      DK = 3.0D0 + FID + FID
      D1 = AK*DK
      D2 = BK*CK
      AD = MIN(D1,D2)
      AK = 24.0D0 + 9.0D0*FID
      BK = 30.0D0 - 9.0D0*FID
      DO 30 K=1,25
        STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
        TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
        TRM1R = STR
        S1R = S1R + TRM1R
        S1I = S1I + TRM1I
        STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
        TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
        TRM2R = STR
        S2R = S2R + TRM2R
        S2I = S2I + TRM2I
        ATRM = ATRM*AZ3/AD
        D1 = D1 + AK
        D2 = D2 + BK
        AD = MIN(D1,D2)
        IF (ATRM.LT.TOL*AD) GO TO 40
        AK = AK + 18.0D0
        BK = BK + 18.0D0
   30 CONTINUE
   40 CONTINUE
      IF (ID.EQ.1) GO TO 50
      AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
      AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
      IF (KODE.EQ.1) RETURN
      CALL ZSQRT(ZR, ZI, STR, STI)
      ZTAR = TTH*(ZR*STR-ZI*STI)
      ZTAI = TTH*(ZR*STI+ZI*STR)
      CALL ZEXP(ZTAR, ZTAI, STR, STI)
      PTR = AIR*STR - AII*STI
      AII = AIR*STI + AII*STR
      AIR = PTR
      RETURN
   50 CONTINUE
      AIR = -S2R*C2
      AII = -S2I*C2
      IF (AZ.LE.TOL) GO TO 60
      STR = ZR*S1R - ZI*S1I
      STI = ZR*S1I + ZI*S1R
      CC = C1/(1.0D0+FID)
      AIR = AIR + CC*(STR*ZR-STI*ZI)
      AII = AII + CC*(STR*ZI+STI*ZR)
   60 CONTINUE
      IF (KODE.EQ.1) RETURN
      CALL ZSQRT(ZR, ZI, STR, STI)
      ZTAR = TTH*(ZR*STR-ZI*STI)
      ZTAI = TTH*(ZR*STI+ZI*STR)
      CALL ZEXP(ZTAR, ZTAI, STR, STI)
      PTR = STR*AIR - STI*AII
      AII = STR*AII + STI*AIR
      AIR = PTR
      RETURN
C-----------------------------------------------------------------------
C     CASE FOR ABS(Z).GT.1.0
C-----------------------------------------------------------------------
   70 CONTINUE
      FNU = (1.0D0+FID)/3.0D0
C-----------------------------------------------------------------------
C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C-----------------------------------------------------------------------
      K1 = I1MACH(15)
      K2 = I1MACH(16)
      R1M5 = D1MACH(5)
      K = MIN(ABS(K1),ABS(K2))
      ELIM = 2.303D0*(K*R1M5-3.0D0)
      K1 = I1MACH(14) - 1
      AA = R1M5*K1
      DIG = MIN(AA,18.0D0)
      AA = AA*2.303D0
      ALIM = ELIM + MAX(-AA,-41.45D0)
      RL = 1.2D0*DIG + 3.0D0
      ALAZ = LOG(AZ)
C-----------------------------------------------------------------------
C     TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
      AA=0.5D0/TOL
      BB=I1MACH(9)*0.5D0
      AA=MIN(AA,BB)
      AA=AA**TTH
      IF (AZ.GT.AA) GO TO 260
      AA=SQRT(AA)
      IF (AZ.GT.AA) IERR=3
      CALL ZSQRT(ZR, ZI, CSQR, CSQI)
      ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
      ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
C-----------------------------------------------------------------------
C     RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
C-----------------------------------------------------------------------
      IFLAG = 0
      SFAC = 1.0D0
      AK = ZTAI
      IF (ZR.GE.0.0D0) GO TO 80
      BK = ZTAR
      CK = -ABS(BK)
      ZTAR = CK
      ZTAI = AK
   80 CONTINUE
      IF (ZI.NE.0.0D0) GO TO 90
      IF (ZR.GT.0.0D0) GO TO 90
      ZTAR = 0.0D0
      ZTAI = AK
   90 CONTINUE
      AA = ZTAR
      IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
      IF (KODE.EQ.2) GO TO 100
C-----------------------------------------------------------------------
C     OVERFLOW TEST
C-----------------------------------------------------------------------
      IF (AA.GT.(-ALIM)) GO TO 100
      AA = -AA + 0.25D0*ALAZ
      IFLAG = 1
      SFAC = TOL
      IF (AA.GT.ELIM) GO TO 270
  100 CONTINUE
C-----------------------------------------------------------------------
C     CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
C-----------------------------------------------------------------------
      MR = 1
      IF (ZI.LT.0.0D0) MR = -1
      CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL,
     * ELIM, ALIM)
      IF (NN.LT.0) GO TO 280
      NZ = NZ + NN
      GO TO 130
  110 CONTINUE
      IF (KODE.EQ.2) GO TO 120
C-----------------------------------------------------------------------
C     UNDERFLOW TEST
C-----------------------------------------------------------------------
      IF (AA.LT.ALIM) GO TO 120
      AA = -AA - 0.25D0*ALAZ
      IFLAG = 2
      SFAC = 1.0D0/TOL
      IF (AA.LT.(-ELIM)) GO TO 210
  120 CONTINUE
      CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM,
     * ALIM)
  130 CONTINUE
      S1R = CYR(1)*COEF
      S1I = CYI(1)*COEF
      IF (IFLAG.NE.0) GO TO 150
      IF (ID.EQ.1) GO TO 140
      AIR = CSQR*S1R - CSQI*S1I
      AII = CSQR*S1I + CSQI*S1R
      RETURN
  140 CONTINUE
      AIR = -(ZR*S1R-ZI*S1I)
      AII = -(ZR*S1I+ZI*S1R)
      RETURN
  150 CONTINUE
      S1R = S1R*SFAC
      S1I = S1I*SFAC
      IF (ID.EQ.1) GO TO 160
      STR = S1R*CSQR - S1I*CSQI
      S1I = S1R*CSQI + S1I*CSQR
      S1R = STR
      AIR = S1R/SFAC
      AII = S1I/SFAC
      RETURN
  160 CONTINUE
      STR = -(S1R*ZR-S1I*ZI)
      S1I = -(S1R*ZI+S1I*ZR)
      S1R = STR
      AIR = S1R/SFAC
      AII = S1I/SFAC
      RETURN
  170 CONTINUE
      AA = 1.0D+3*D1MACH(1)
      S1R = ZEROR
      S1I = ZEROI
      IF (ID.EQ.1) GO TO 190
      IF (AZ.LE.AA) GO TO 180
      S1R = C2*ZR
      S1I = C2*ZI
  180 CONTINUE
      AIR = C1 - S1R
      AII = -S1I
      RETURN
  190 CONTINUE
      AIR = -C2
      AII = 0.0D0
      AA = SQRT(AA)
      IF (AZ.LE.AA) GO TO 200
      S1R = 0.5D0*(ZR*ZR-ZI*ZI)
      S1I = ZR*ZI
  200 CONTINUE
      AIR = AIR + C1*S1R
      AII = AII + C1*S1I
      RETURN
  210 CONTINUE
      NZ = 1
      AIR = ZEROR
      AII = ZEROI
      RETURN
  270 CONTINUE
      NZ = 0
      IERR=2
      RETURN
  280 CONTINUE
      IF(NN.EQ.(-1)) GO TO 270
      NZ=0
      IERR=5
      RETURN
  260 CONTINUE
      IERR=4
      NZ=0
      RETURN
      END