1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
subroutine dgbsl(abd,lda,n,ml,mu,ipvt,b,job)
integer lda,n,ml,mu,ipvt(*),job
double precision abd(lda,*),b(*)
c!purpose
c
c dgbsl solves the double precision band system
c a * x = b or trans(a) * x = b
c using the factors computed by dgbco or dgbfa.
c
c!calling sequence
c
c subroutine dgbsl(abd,lda,n,ml,mu,ipvt,b,job)
c on entry
c
c abd double precision(lda, n)
c the output from dgbco or dgbfa.
c
c lda integer
c the leading dimension of the array abd .
c
c n integer
c the order of the original matrix.
c
c ml integer
c number of diagonals below the main diagonal.
c
c mu integer
c number of diagonals above the main diagonal.
c
c ipvt integer(n)
c the pivot vector from dgbco or dgbfa.
c
c b double precision(n)
c the right hand side vector.
c
c job integer
c = 0 to solve a*x = b ,
c = nonzero to solve trans(a)*x = b , where
c trans(a) is the transpose.
c
c on return
c
c b the solution vector x .
c
c error condition
c
c a division by zero will occur if the input factor contains a
c zero on the diagonal. technically this indicates singularity
c but it is often caused by improper arguments or improper
c setting of lda . it will not occur if the subroutines are
c called correctly and if dgbco has set rcond .gt. 0.0
c or dgbfa has set info .eq. 0 .
c
c to compute inverse(a) * c where c is a matrix
c with p columns
c call dgbco(abd,lda,n,ml,mu,ipvt,rcond,z)
c if (rcond is too small) go to ...
c do 10 j = 1, p
c call dgbsl(abd,lda,n,ml,mu,ipvt,c(1,j),0)
c 10 continue
c
c!originator
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c blas daxpy,ddot
c fortran min
c
c!
c internal variables
c
double precision ddot,t
integer k,kb,l,la,lb,lm,m,nm1
c
m = mu + ml + 1
nm1 = n - 1
if (job .ne. 0) go to 50
c
c job = 0 , solve a * x = b
c first solve l*y = b
c
if (ml .eq. 0) go to 30
if (nm1 .lt. 1) go to 30
do 20 k = 1, nm1
lm = min(ml,n-k)
l = ipvt(k)
t = b(l)
if (l .eq. k) go to 10
b(l) = b(k)
b(k) = t
10 continue
call daxpy(lm,t,abd(m+1,k),1,b(k+1),1)
20 continue
30 continue
c
c now solve u*x = y
c
do 40 kb = 1, n
k = n + 1 - kb
b(k) = b(k)/abd(m,k)
lm = min(k,m) - 1
la = m - lm
lb = k - lm
t = -b(k)
call daxpy(lm,t,abd(la,k),1,b(lb),1)
40 continue
go to 100
50 continue
c
c job = nonzero, solve trans(a) * x = b
c first solve trans(u)*y = b
c
do 60 k = 1, n
lm = min(k,m) - 1
la = m - lm
lb = k - lm
t = ddot(lm,abd(la,k),1,b(lb),1)
b(k) = (b(k) - t)/abd(m,k)
60 continue
c
c now solve trans(l)*x = y
c
if (ml .eq. 0) go to 90
if (nm1 .lt. 1) go to 90
do 80 kb = 1, nm1
k = n - kb
lm = min(ml,n-k)
b(k) = b(k) + ddot(lm,abd(m+1,k),1,b(k+1),1)
l = ipvt(k)
if (l .eq. k) go to 70
t = b(l)
b(l) = b(k)
b(k) = t
70 continue
80 continue
90 continue
100 continue
return
end
|