File: dgbsl.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (141 lines) | stat: -rw-r--r-- 3,855 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      subroutine dgbsl(abd,lda,n,ml,mu,ipvt,b,job)
      integer lda,n,ml,mu,ipvt(*),job
      double precision abd(lda,*),b(*)
c!purpose
c
c     dgbsl solves the double precision band system
c     a * x = b  or  trans(a) * x = b
c     using the factors computed by dgbco or dgbfa.
c
c!calling sequence
c
c      subroutine dgbsl(abd,lda,n,ml,mu,ipvt,b,job)
c     on entry
c
c        abd     double precision(lda, n)
c                the output from dgbco or dgbfa.
c
c        lda     integer
c                the leading dimension of the array  abd .
c
c        n       integer
c                the order of the original matrix.
c
c        ml      integer
c                number of diagonals below the main diagonal.
c
c        mu      integer
c                number of diagonals above the main diagonal.
c
c        ipvt    integer(n)
c                the pivot vector from dgbco or dgbfa.
c
c        b       double precision(n)
c                the right hand side vector.
c
c        job     integer
c                = 0         to solve  a*x = b ,
c                = nonzero   to solve  trans(a)*x = b , where
c                            trans(a)  is the transpose.
c
c     on return
c
c        b       the solution vector  x .
c
c     error condition
c
c        a division by zero will occur if the input factor contains a
c        zero on the diagonal.  technically this indicates singularity
c        but it is often caused by improper arguments or improper
c        setting of lda .  it will not occur if the subroutines are
c        called correctly and if dgbco has set rcond .gt. 0.0
c        or dgbfa has set info .eq. 0 .
c
c     to compute  inverse(a) * c  where  c  is a matrix
c     with  p  columns
c           call dgbco(abd,lda,n,ml,mu,ipvt,rcond,z)
c           if (rcond is too small) go to ...
c           do 10 j = 1, p
c              call dgbsl(abd,lda,n,ml,mu,ipvt,c(1,j),0)
c        10 continue
c
c!originator
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c     blas daxpy,ddot
c     fortran min
c
c!
c     internal variables
c
      double precision ddot,t
      integer k,kb,l,la,lb,lm,m,nm1
c
      m = mu + ml + 1
      nm1 = n - 1
      if (job .ne. 0) go to 50
c
c        job = 0 , solve  a * x = b
c        first solve l*y = b
c
         if (ml .eq. 0) go to 30
         if (nm1 .lt. 1) go to 30
            do 20 k = 1, nm1
               lm = min(ml,n-k)
               l = ipvt(k)
               t = b(l)
               if (l .eq. k) go to 10
                  b(l) = b(k)
                  b(k) = t
   10          continue
               call daxpy(lm,t,abd(m+1,k),1,b(k+1),1)
   20       continue
   30    continue
c
c        now solve  u*x = y
c
         do 40 kb = 1, n
            k = n + 1 - kb
            b(k) = b(k)/abd(m,k)
            lm = min(k,m) - 1
            la = m - lm
            lb = k - lm
            t = -b(k)
            call daxpy(lm,t,abd(la,k),1,b(lb),1)
   40    continue
      go to 100
   50 continue
c
c        job = nonzero, solve  trans(a) * x = b
c        first solve  trans(u)*y = b
c
         do 60 k = 1, n
            lm = min(k,m) - 1
            la = m - lm
            lb = k - lm
            t = ddot(lm,abd(la,k),1,b(lb),1)
            b(k) = (b(k) - t)/abd(m,k)
   60    continue
c
c        now solve trans(l)*x = y
c
         if (ml .eq. 0) go to 90
         if (nm1 .lt. 1) go to 90
            do 80 kb = 1, nm1
               k = n - kb
               lm = min(ml,n-k)
               b(k) = b(k) + ddot(lm,abd(m+1,k),1,b(k+1),1)
               l = ipvt(k)
               if (l .eq. k) go to 70
                  t = b(l)
                  b(l) = b(k)
                  b(k) = t
   70          continue
   80       continue
   90    continue
  100 continue
      return
      end