1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
subroutine dgeco(a,lda,n,ipvt,rcond,z)
integer lda,n,ipvt(*)
double precision a(lda,*),z(*)
double precision rcond
c!purpose
c
c dgeco factors a double precision matrix by gaussian elimination
c and estimates the condition of the matrix.
c
c if rcond is not needed, dgefa is slightly faster.
c to solve a*x = b , follow dgeco by dgesl.
c to compute inverse(a)*c , follow dgeco by dgesl.
c to compute determinant(a) , follow dgeco by dgedi.
c to compute inverse(a) , follow dgeco by dgedi.
c
c!calling sequence
c
c subroutine dgeco(a,lda,n,ipvt,rcond,z)
c on entry
c
c a double precision(lda, n)
c the matrix to be factored.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c on return
c
c a an upper triangular matrix and the multipliers
c which were used to obtain it.
c the factorization can be written a = l*u where
c l is a product of permutation and unit lower
c triangular matrices and u is upper triangular.
c
c ipvt integer(n)
c an integer vector of pivot indices.
c
c rcond double precision
c an estimate of the reciprocal condition of a .
c for the system a*x = b , relative perturbations
c in a and b of size epsilon may cause
c relative perturbations in x of size epsilon/rcond .
c if rcond is so small that the logical expression
c 1.0 + rcond .eq. 1.0
c is true, then a may be singular to working
c precision. in particular, rcond is zero if
c exact singularity is detected or the estimate
c underflows.
c
c z double precision(n)
c a work vector whose contents are usually unimportant.
c if a is close to a singular matrix, then z is
c an approximate null vector in the sense that
c norm(a*z) = rcond*norm(a)*norm(z) .
c
c!originator
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c linpack dgefa
c blas daxpy,ddot,dscal,dasum
c fortran abs,max,sign
c
c!
c internal variables
c
double precision ddot,ek,t,wk,wkm
double precision anorm,s,dasum,sm,ynorm
integer info,j,k,kb,kp1,l
c
c
c compute 1-norm of a
c
anorm = 0.0d+0
do 10 j = 1, n
anorm = max(anorm,dasum(n,a(1,j),1))
10 continue
c
c factor
c
call dgefa(a,lda,n,ipvt,info)
c
c rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
c estimate = norm(z)/norm(y) where a*z = y and trans(a)*y = e .
c trans(a) is the transpose of a . the components of e are
c chosen to cause maximum local growth in the elements of w where
c trans(u)*w = e . the vectors are frequently rescaled to avoid
c overflow.
c
c solve trans(u)*w = e
c
ek = 1.0d+0
do 20 j = 1, n
z(j) = 0.0d+0
20 continue
do 100 k = 1, n
if (z(k) .ne. 0.0d+0) ek = sign(ek,-z(k))
if (abs(ek-z(k)) .le. abs(a(k,k))) go to 30
s = abs(a(k,k))/abs(ek-z(k))
call dscal(n,s,z,1)
ek = s*ek
30 continue
wk = ek - z(k)
wkm = -ek - z(k)
s = abs(wk)
sm = abs(wkm)
if (a(k,k) .eq. 0.0d+0) go to 40
wk = wk/a(k,k)
wkm = wkm/a(k,k)
go to 50
40 continue
wk = 1.0d+0
wkm = 1.0d+0
50 continue
kp1 = k + 1
if (kp1 .gt. n) go to 90
do 60 j = kp1, n
sm = sm + abs(z(j)+wkm*a(k,j))
z(j) = z(j) + wk*a(k,j)
s = s + abs(z(j))
60 continue
if (s .ge. sm) go to 80
t = wkm - wk
wk = wkm
do 70 j = kp1, n
z(j) = z(j) + t*a(k,j)
70 continue
80 continue
90 continue
z(k) = wk
100 continue
s = 1.0d+0/dasum(n,z,1)
call dscal(n,s,z,1)
c
c solve trans(l)*y = w
c
do 120 kb = 1, n
k = n + 1 - kb
if (k .lt. n) z(k) = z(k) + ddot(n-k,a(k+1,k),1,z(k+1),1)
if (abs(z(k)) .le. 1.0d+0) go to 110
s = 1.0d+0/abs(z(k))
call dscal(n,s,z,1)
110 continue
l = ipvt(k)
t = z(l)
z(l) = z(k)
z(k) = t
120 continue
s = 1.0d+0/dasum(n,z,1)
call dscal(n,s,z,1)
c
ynorm = 1.0d+0
c
c solve l*v = y
c
do 140 k = 1, n
l = ipvt(k)
t = z(l)
z(l) = z(k)
z(k) = t
if (k .lt. n) call daxpy(n-k,t,a(k+1,k),1,z(k+1),1)
if (abs(z(k)) .le. 1.0d+0) go to 130
s = 1.0d+0/abs(z(k))
call dscal(n,s,z,1)
ynorm = s*ynorm
130 continue
140 continue
s = 1.0d+0/dasum(n,z,1)
call dscal(n,s,z,1)
ynorm = s*ynorm
c
c solve u*z = v
c
do 160 kb = 1, n
k = n + 1 - kb
if (abs(z(k)) .le. abs(a(k,k))) go to 150
s = abs(a(k,k))/abs(z(k))
call dscal(n,s,z,1)
ynorm = s*ynorm
150 continue
if (a(k,k) .ne. 0.0d+0) z(k) = z(k)/a(k,k)
if (a(k,k) .eq. 0.0d+0) z(k) = 1.0d+0
t = -z(k)
call daxpy(k-1,t,a(1,k),1,z(1),1)
160 continue
c make znorm = 1.0
s = 1.0d+0/dasum(n,z,1)
call dscal(n,s,z,1)
ynorm = s*ynorm
c
if (anorm .ne. 0.0d+0) rcond = ynorm/anorm
if (anorm .eq. 0.0d+0) rcond = 0.0d+0
return
end
|