File: dgeco.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (199 lines) | stat: -rw-r--r-- 5,831 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
      subroutine dgeco(a,lda,n,ipvt,rcond,z)
      integer lda,n,ipvt(*)
      double precision a(lda,*),z(*)
      double precision rcond
c!purpose
c
c     dgeco factors a double precision matrix by gaussian elimination
c     and estimates the condition of the matrix.
c
c     if  rcond  is not needed, dgefa is slightly faster.
c     to solve  a*x = b , follow dgeco by dgesl.
c     to compute  inverse(a)*c , follow dgeco by dgesl.
c     to compute  determinant(a) , follow dgeco by dgedi.
c     to compute  inverse(a) , follow dgeco by dgedi.
c
c!calling sequence
c
c      subroutine dgeco(a,lda,n,ipvt,rcond,z)
c     on entry
c
c        a       double precision(lda, n)
c                the matrix to be factored.
c
c        lda     integer
c                the leading dimension of the array  a .
c
c        n       integer
c                the order of the matrix  a .
c
c     on return
c
c        a       an upper triangular matrix and the multipliers
c                which were used to obtain it.
c                the factorization can be written  a = l*u  where
c                l  is a product of permutation and unit lower
c                triangular matrices and  u  is upper triangular.
c
c        ipvt    integer(n)
c                an integer vector of pivot indices.
c
c        rcond   double precision
c                an estimate of the reciprocal condition of  a .
c                for the system  a*x = b , relative perturbations
c                in  a  and  b  of size  epsilon  may cause
c                relative perturbations in  x  of size  epsilon/rcond .
c                if  rcond  is so small that the logical expression
c                           1.0 + rcond .eq. 1.0
c                is true, then  a  may be singular to working
c                precision.  in particular,  rcond  is zero  if
c                exact singularity is detected or the estimate
c                underflows.
c
c        z       double precision(n)
c                a work vector whose contents are usually unimportant.
c                if  a  is close to a singular matrix, then  z  is
c                an approximate null vector in the sense that
c                norm(a*z) = rcond*norm(a)*norm(z) .
c
c!originator
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c     linpack dgefa
c     blas daxpy,ddot,dscal,dasum
c     fortran abs,max,sign
c
c!
c     internal variables
c
      double precision ddot,ek,t,wk,wkm
      double precision anorm,s,dasum,sm,ynorm
      integer info,j,k,kb,kp1,l
c
c
c     compute 1-norm of a
c
      anorm = 0.0d+0
      do 10 j = 1, n
         anorm = max(anorm,dasum(n,a(1,j),1))
   10 continue
c
c     factor
c
      call dgefa(a,lda,n,ipvt,info)
c
c     rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
c     estimate = norm(z)/norm(y) where  a*z = y  and  trans(a)*y = e .
c     trans(a)  is the transpose of a .  the components of  e  are
c     chosen to cause maximum local growth in the elements of w  where
c     trans(u)*w = e .  the vectors are frequently rescaled to avoid
c     overflow.
c
c     solve trans(u)*w = e
c
      ek = 1.0d+0
      do 20 j = 1, n
         z(j) = 0.0d+0
   20 continue
      do 100 k = 1, n
         if (z(k) .ne. 0.0d+0) ek = sign(ek,-z(k))
         if (abs(ek-z(k)) .le. abs(a(k,k))) go to 30
            s = abs(a(k,k))/abs(ek-z(k))
            call dscal(n,s,z,1)
            ek = s*ek
   30    continue
         wk = ek - z(k)
         wkm = -ek - z(k)
         s = abs(wk)
         sm = abs(wkm)
         if (a(k,k) .eq. 0.0d+0) go to 40
            wk = wk/a(k,k)
            wkm = wkm/a(k,k)
         go to 50
   40    continue
            wk = 1.0d+0
            wkm = 1.0d+0
   50    continue
         kp1 = k + 1
         if (kp1 .gt. n) go to 90
            do 60 j = kp1, n
               sm = sm + abs(z(j)+wkm*a(k,j))
               z(j) = z(j) + wk*a(k,j)
               s = s + abs(z(j))
   60       continue
            if (s .ge. sm) go to 80
               t = wkm - wk
               wk = wkm
               do 70 j = kp1, n
                  z(j) = z(j) + t*a(k,j)
   70          continue
   80       continue
   90    continue
         z(k) = wk
  100 continue
      s = 1.0d+0/dasum(n,z,1)
      call dscal(n,s,z,1)
c
c     solve trans(l)*y = w
c
      do 120 kb = 1, n
         k = n + 1 - kb
         if (k .lt. n) z(k) = z(k) + ddot(n-k,a(k+1,k),1,z(k+1),1)
         if (abs(z(k)) .le. 1.0d+0) go to 110
            s = 1.0d+0/abs(z(k))
            call dscal(n,s,z,1)
  110    continue
         l = ipvt(k)
         t = z(l)
         z(l) = z(k)
         z(k) = t
  120 continue
      s = 1.0d+0/dasum(n,z,1)
      call dscal(n,s,z,1)
c
      ynorm = 1.0d+0
c
c     solve l*v = y
c
      do 140 k = 1, n
         l = ipvt(k)
         t = z(l)
         z(l) = z(k)
         z(k) = t
         if (k .lt. n) call daxpy(n-k,t,a(k+1,k),1,z(k+1),1)
         if (abs(z(k)) .le. 1.0d+0) go to 130
            s = 1.0d+0/abs(z(k))
            call dscal(n,s,z,1)
            ynorm = s*ynorm
  130    continue
  140 continue
      s = 1.0d+0/dasum(n,z,1)
      call dscal(n,s,z,1)
      ynorm = s*ynorm
c
c     solve  u*z = v
c
      do 160 kb = 1, n
         k = n + 1 - kb
         if (abs(z(k)) .le. abs(a(k,k))) go to 150
            s = abs(a(k,k))/abs(z(k))
            call dscal(n,s,z,1)
            ynorm = s*ynorm
  150    continue
         if (a(k,k) .ne. 0.0d+0) z(k) = z(k)/a(k,k)
         if (a(k,k) .eq. 0.0d+0) z(k) = 1.0d+0
         t = -z(k)
         call daxpy(k-1,t,a(1,k),1,z(1),1)
  160 continue
c     make znorm = 1.0
      s = 1.0d+0/dasum(n,z,1)
      call dscal(n,s,z,1)
      ynorm = s*ynorm
c
      if (anorm .ne. 0.0d+0) rcond = ynorm/anorm
      if (anorm .eq. 0.0d+0) rcond = 0.0d+0
      return
      end