1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
subroutine dgedi(a,lda,n,ipvt,det,work,job)
integer lda,n,ipvt(*),job
double precision a(lda,*),det(2),work(*)
c!purpose
c
c dgedi computes the determinant and inverse of a matrix
c using the factors computed by dgeco or dgefa.
c
c!calling sequence
c
c subroutine dgedi(a,lda,n,ipvt,det,work,job)
c on entry
c
c a double precision(lda, n)
c the output from dgeco or dgefa.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c ipvt integer(n)
c the pivot vector from dgeco or dgefa.
c
c work double precision(n)
c work vector. contents destroyed.
c
c job integer
c = 11 both determinant and inverse.
c = 01 inverse only.
c = 10 determinant only.
c
c on return
c
c a inverse of original matrix if requested.
c otherwise unchanged.
c
c det double precision(2)
c determinant of original matrix if requested.
c otherwise not referenced.
c determinant = det(1) * 10.0**det(2)
c with 1.0 .le. abs(det(1)) .lt. 10.0
c or det(1) .eq. 0.0 .
c
c error condition
c
c a division by zero will occur if the input factor contains
c a zero on the diagonal and the inverse is requested.
c it will not occur if the subroutines are called correctly
c and if dgeco has set rcond .gt. 0.0 or dgefa has set
c info .eq. 0 .
c
c!originator
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c blas daxpy,dscal,dswap
c fortran abs,mod
c
c!
c internal variables
c
double precision t
double precision ten
integer i,j,k,kb,kp1,l,nm1
c
c
c compute determinant
c
if (job/10 .eq. 0) go to 70
det(1) = 1.0d+0
det(2) = 0.0d+0
ten = 10.0d+0
do 50 i = 1, n
if (ipvt(i) .ne. i) det(1) = -det(1)
det(1) = a(i,i)*det(1)
c ...exit
if (det(1) .eq. 0.0d+0) go to 60
10 if (abs(det(1)) .ge. 1.0d+0) go to 20
det(1) = ten*det(1)
det(2) = det(2) - 1.0d+0
go to 10
20 continue
30 if (abs(det(1)) .lt. ten) go to 40
det(1) = det(1)/ten
det(2) = det(2) + 1.0d+0
go to 30
40 continue
50 continue
60 continue
70 continue
c
c compute inverse(u)
c
if (mod(job,10) .eq. 0) go to 150
do 100 k = 1, n
a(k,k) = 1.0d+0/a(k,k)
t = -a(k,k)
call dscal(k-1,t,a(1,k),1)
kp1 = k + 1
if (n .lt. kp1) go to 90
do 80 j = kp1, n
t = a(k,j)
a(k,j) = 0.0d+0
call daxpy(k,t,a(1,k),1,a(1,j),1)
80 continue
90 continue
100 continue
c
c form inverse(u)*inverse(l)
c
nm1 = n - 1
if (nm1 .lt. 1) go to 140
do 130 kb = 1, nm1
k = n - kb
kp1 = k + 1
do 110 i = kp1, n
work(i) = a(i,k)
a(i,k) = 0.0d+0
110 continue
do 120 j = kp1, n
t = work(j)
call daxpy(n,t,a(1,j),1,a(1,k),1)
120 continue
l = ipvt(k)
if (l .ne. k) call dswap(n,a(1,k),1,a(1,l),1)
130 continue
140 continue
150 continue
return
end
|