File: dsvdc.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (489 lines) | stat: -rw-r--r-- 15,387 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
      subroutine dsvdc(x,ldx,n,p,s,e,u,ldu,v,ldv,work,job,info)
      integer ldx,n,p,ldu,ldv,job,info
      double precision x(ldx,*),s(*),e(*),u(ldu,*),v(ldv,*),work(*)
c!purpose
c
c
c     dsvdc is a subroutine to reduce a double precision nxp matrix x
c     by orthogonal transformations u and v to diagonal form.  the
c     diagonal elements s(i) are the singular values of x.  the
c     columns of u are the corresponding left singular vectors,
c     and the columns of v the right singular vectors.
c
c!calling sequence
c
c      subroutine dsvdc(x,ldx,n,p,s,e,u,ldu,v,ldv,work,job,info)
c     on entry
c
c         x         double precision(ldx,p), where ldx.ge.n.
c                   x contains the matrix whose singular value
c                   decomposition is to be computed.  x is
c                   destroyed by dsvdc.
c
c         ldx       integer.
c                   ldx is the leading dimension of the array x.
c
c         n         integer.
c                   n is the number of rows of the matrix x.
c
c         p         integer.
c                   p is the number of columns of the matrix x.
c
c         ldu       integer.
c                   ldu is the leading dimension of the array u.
c                   (see below).
c
c         ldv       integer.
c                   ldv is the leading dimension of the array v.
c                   (see below).
c
c         work      double precision(n).
c                   work is a scratch array.
c
c         job       integer.
c                   job controls the computation of the singular
c                   vectors.  it has the decimal expansion ab
c                   with the following meaning
c
c                        a.eq.0    do not compute the left singular
c                                  vectors.
c                        a.eq.1    return the n left singular vectors
c                                  in u.
c                        a.ge.2    return the first min(n,p) singular
c                                  vectors in u.
c                        b.eq.0    do not compute the right singular
c                                  vectors.
c                        b.eq.1    return the right singular vectors
c                                  in v.
c
c     on return
c
c         s         double precision(mm), where mm=min(n+1,p).
c                   the first min(n,p) entries of s contain the
c                   singular values of x arranged in descending
c                   order of magnitude.
c
c         e         double precision(m), where m=min(n,p).
c                   e ordinarily contains zeros.  however see the
c                   discussion of info for exceptions.
c
c         u         double precision(ldu,k), where ldu.ge.n.  if
c                                   joba.eq.1 then k.eq.n, if joba.ge.2
c                                   then k.eq.min(n,p).
c                   u contains the matrix of right singular vectors.
c                   u is not referenced if joba.eq.0.  if n.le.p
c                   or if joba.eq.2, then u may be identified with x
c                   in the subroutine call.
c
c         v         double precision(ldv,p), where ldv.ge.p.
c                   v contains the matrix of right singular vectors.
c                   v is not referenced if job.eq.0.  if p.le.n,
c                   then v may be identified with x in the
c                   subroutine call.
c
c         info      integer.
c                   the singular values (and their corresponding
c                   singular vectors) s(info+1),s(info+2),...,s(m)
c                   are correct (here m=min(n,p)).  thus if
c                   info.eq.0, all the singular values and their
c                   vectors are correct.  in any event, the matrix
c                   b = trans(u)*x*v is the bidiagonal matrix
c                   with the elements of s on its diagonal and the
c                   elements of e on its super-diagonal (trans(u)
c                   is the transpose of u).  thus the singular
c                   values of x and b are the same.
c
c!originator
c     linpack. this version dated 03/19/79 .
c              correction made to shift 2/84.
c     g.w. stewart, university of maryland, argonne national lab.
c
c!auxiliary routines
c
c     external drot
c     blas daxpy,ddot,dscal,dswap,dnrm2,drotg
c     fortran abs,max,max,min,mod,sqrt
c!
c     internal variables
c
      integer i,iter,j,jobu,k,kase,kk,l,ll,lls,lm1,lp1,ls,lu,m,maxit,
     *        mm,mm1,mp1,nct,nctp1,ncu,nrt,nrtp1
      double precision ddot,t
      double precision b,c,cs,el,emm1,f,g,dnrm2,scale,shift,sl,sm,sn,
     *                 smm1,t1,test,ztest
      logical wantu,wantv
c
c
c     set the maximum number of iterations.
c     MODIFIED ACCORDING TO EISPACK HQR2
c
      maxit = 30*min(n,p)
c
c     determine what is to be computed.
c
      wantu = .false.
      wantv = .false.
      jobu = mod(job,100)/10
      ncu = n
      if (jobu .gt. 1) ncu = min(n,p)
      if (jobu .ne. 0) wantu = .true.
      if (mod(job,10) .ne. 0) wantv = .true.
c
c     reduce x to bidiagonal form, storing the diagonal elements
c     in s and the super-diagonal elements in e.
c
      info = 0
      nct = min(n-1,p)
      nrt = max(0,min(p-2,n))
      lu = max(nct,nrt)
      if (lu .lt. 1) go to 170
      do 160 l = 1, lu
         lp1 = l + 1
         if (l .gt. nct) go to 20
c
c           compute the transformation for the l-th column and
c           place the l-th diagonal in s(l).
c
            s(l) = dnrm2(n-l+1,x(l,l),1)
            if (s(l) .eq. 0.0d+0) go to 10
               if (x(l,l) .ne. 0.0d+0) s(l) = sign(s(l),x(l,l))
               call dscal(n-l+1,1.0d+0/s(l),x(l,l),1)
               x(l,l) = 1.0d+0 + x(l,l)
   10       continue
            s(l) = -s(l)
   20    continue
         if (p .lt. lp1) go to 50
         do 40 j = lp1, p
            if (l .gt. nct) go to 30
            if (s(l) .eq. 0.0d+0) go to 30
c
c              apply the transformation.
c
               t = -ddot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l)
               call daxpy(n-l+1,t,x(l,l),1,x(l,j),1)
   30       continue
c
c           place the l-th row of x into  e for the
c           subsequent calculation of the row transformation.
c
            e(j) = x(l,j)
   40    continue
   50    continue
         if (.not.wantu .or. l .gt. nct) go to 70
c
c           place the transformation in u for subsequent back
c           multiplication.
c
            do 60 i = l, n
               u(i,l) = x(i,l)
   60       continue
   70    continue
         if (l .gt. nrt) go to 150
c
c           compute the l-th row transformation and place the
c           l-th super-diagonal in e(l).
c
            e(l) = dnrm2(p-l,e(lp1),1)
            if (e(l) .eq. 0.0d+0) go to 80
               if (e(lp1) .ne. 0.0d+0) e(l) = sign(e(l),e(lp1))
               call dscal(p-l,1.0d+0/e(l),e(lp1),1)
               e(lp1) = 1.0d+0 + e(lp1)
   80       continue
            e(l) = -e(l)
            if (lp1 .gt. n .or. e(l) .eq. 0.0d+0) go to 120
c
c              apply the transformation.
c
               do 90 i = lp1, n
                  work(i) = 0.0d+0
   90          continue
               do 100 j = lp1, p
                  call daxpy(n-l,e(j),x(lp1,j),1,work(lp1),1)
  100          continue
               do 110 j = lp1, p
                  call daxpy(n-l,-e(j)/e(lp1),work(lp1),1,x(lp1,j),1)
  110          continue
  120       continue
            if (.not.wantv) go to 140
c
c              place the transformation in v for subsequent
c              back multiplication.
c
               do 130 i = lp1, p
                  v(i,l) = e(i)
  130          continue
  140       continue
  150    continue
  160 continue
  170 continue
c
c     set up the final bidiagonal matrix or order m.
c
      m = min(p,n+1)
      nctp1 = nct + 1
      nrtp1 = nrt + 1
      if (nct .lt. p) s(nctp1) = x(nctp1,nctp1)
      if (n .lt. m) s(m) = 0.0d+0
      if (nrtp1 .lt. m) e(nrtp1) = x(nrtp1,m)
      e(m) = 0.0d+0
c
c     if required, generate u.
c
      if (.not.wantu) go to 300
         if (ncu .lt. nctp1) go to 200
         do 190 j = nctp1, ncu
            do 180 i = 1, n
               u(i,j) = 0.0d+0
  180       continue
            u(j,j) = 1.0d+0
  190    continue
  200    continue
         if (nct .lt. 1) go to 290
         do 280 ll = 1, nct
            l = nct - ll + 1
            if (s(l) .eq. 0.0d+0) go to 250
               lp1 = l + 1
               if (ncu .lt. lp1) go to 220
               do 210 j = lp1, ncu
                  t = -ddot(n-l+1,u(l,l),1,u(l,j),1)/u(l,l)
                  call daxpy(n-l+1,t,u(l,l),1,u(l,j),1)
  210          continue
  220          continue
               call dscal(n-l+1,-1.0d+0,u(l,l),1)
               u(l,l) = 1.0d+0 + u(l,l)
               lm1 = l - 1
               if (lm1 .lt. 1) go to 240
               do 230 i = 1, lm1
                  u(i,l) = 0.0d+0
  230          continue
  240          continue
            go to 270
  250       continue
               do 260 i = 1, n
                  u(i,l) = 0.0d+0
  260          continue
               u(l,l) = 1.0d+0
  270       continue
  280    continue
  290    continue
  300 continue
c
c     if it is required, generate v.
c
      if (.not.wantv) go to 350
         do 340 ll = 1, p
            l = p - ll + 1
            lp1 = l + 1
            if (l .gt. nrt) go to 320
            if (e(l) .eq. 0.0d+0) go to 320
               do 310 j = lp1, p
                  t = -ddot(p-l,v(lp1,l),1,v(lp1,j),1)/v(lp1,l)
                  call daxpy(p-l,t,v(lp1,l),1,v(lp1,j),1)
  310          continue
  320       continue
            do 330 i = 1, p
               v(i,l) = 0.0d+0
  330       continue
            v(l,l) = 1.0d+0
  340    continue
  350 continue
c
c     main iteration loop for the singular values.
c
      mm = m
      iter = 0
  360 continue
c
c        quit if all the singular values have been found.
c
c     ...exit
         if (m .eq. 0) go to 620
c
c        if too many iterations have been performed, set
c        flag and return.
c
         if (iter .lt. maxit) go to 370
            info = m
c     ......exit
            go to 620
  370    continue
c
c        this section of the program inspects for
c        negligible elements in the s and e arrays.  on
c        completion the variables kase and l are set as follows.
c
c           kase = 1     if s(m) and e(l-1) are negligible and l.lt.m
c           kase = 2     if s(l) is negligible and l.lt.m
c           kase = 3     if e(l-1) is negligible, l.lt.m, and
c                        s(l), ..., s(m) are not negligible (qr step).
c           kase = 4     if e(m-1) is negligible (convergence).
c
         do 390 ll = 1, m
            l = m - ll
c        ...exit
            if (l .eq. 0) go to 400
            test = abs(s(l)) + abs(s(l+1))
            ztest = test + abs(e(l))
            if (ztest .ne. test) go to 380
               e(l) = 0.0d+0
c        ......exit
               go to 400
  380       continue
  390    continue
  400    continue
         if (l .ne. m - 1) go to 410
            kase = 4
         go to 480
  410    continue
            lp1 = l + 1
            mp1 = m + 1
            do 430 lls = lp1, mp1
               ls = m - lls + lp1
c           ...exit
               if (ls .eq. l) go to 440
               test = 0.0d+0
               if (ls .ne. m) test = test + abs(e(ls))
               if (ls .ne. l + 1) test = test + abs(e(ls-1))
               ztest = test + abs(s(ls))
               if (ztest .ne. test) go to 420
                  s(ls) = 0.0d+0
c           ......exit
                  go to 440
  420          continue
  430       continue
  440       continue
            if (ls .ne. l) go to 450
               kase = 3
            go to 470
  450       continue
            if (ls .ne. m) go to 460
               kase = 1
            go to 470
  460       continue
               kase = 2
               l = ls
  470       continue
  480    continue
         l = l + 1
c
c        perform the task indicated by kase.
c
         go to (490,520,540,570), kase
c
c        deflate negligible s(m).
c
  490    continue
            mm1 = m - 1
            f = e(m-1)
            e(m-1) = 0.0d+0
            do 510 kk = l, mm1
               k = mm1 - kk + l
               t1 = s(k)
               call drotg(t1,f,cs,sn)
               s(k) = t1
               if (k .eq. l) go to 500
                  f = -sn*e(k-1)
                  e(k-1) = cs*e(k-1)
  500          continue
               if (wantv) call drot(p,v(1,k),1,v(1,m),1,cs,sn)
  510       continue
         go to 610
c
c        split at negligible s(l).
c
  520    continue
            f = e(l-1)
            e(l-1) = 0.0d+0
            do 530 k = l, m
               t1 = s(k)
               call drotg(t1,f,cs,sn)
               s(k) = t1
               f = -sn*e(k)
               e(k) = cs*e(k)
               if (wantu) call drot(n,u(1,k),1,u(1,l-1),1,cs,sn)
  530       continue
         go to 610
c
c        perform one qr step.
c
  540    continue
c
c           calculate the shift.
c
            scale = max(abs(s(m)),abs(s(m-1)),abs(e(m-1)),
     *                    abs(s(l)),abs(e(l)))
            sm = s(m)/scale
            smm1 = s(m-1)/scale
            emm1 = e(m-1)/scale
            sl = s(l)/scale
            el = e(l)/scale
            b = ((smm1 + sm)*(smm1 - sm) + emm1**2)/2.0d+0
            c = (sm*emm1)**2
            shift = 0.0d+0
            if (b .eq. 0.0d+0 .and. c .eq. 0.0d+0) go to 550
               shift = sqrt(b**2+c)
               if (b .lt. 0.0d+0) shift = -shift
               shift = c/(b + shift)
  550       continue
c SHIFT CORRECTION:
c           f = (sl + sm)*(sl - sm) - shift  (original!!!)
            f = (sl + sm)*(sl - sm) + shift
            g = sl*el
c
c           chase zeros.
c
            mm1 = m - 1
            do 560 k = l, mm1
               call drotg(f,g,cs,sn)
               if (k .ne. l) e(k-1) = f
               f = cs*s(k) + sn*e(k)
               e(k) = cs*e(k) - sn*s(k)
               g = sn*s(k+1)
               s(k+1) = cs*s(k+1)
               if (wantv) call drot(p,v(1,k),1,v(1,k+1),1,cs,sn)
               call drotg(f,g,cs,sn)
               s(k) = f
               f = cs*e(k) + sn*s(k+1)
               s(k+1) = -sn*e(k) + cs*s(k+1)
               g = sn*e(k+1)
               e(k+1) = cs*e(k+1)
               if (wantu .and. k .lt. n)
     *            call drot(n,u(1,k),1,u(1,k+1),1,cs,sn)
  560       continue
            e(m-1) = f
            iter = iter + 1
         go to 610
c
c        convergence.
c
  570    continue
c
c           make the singular value  positive.
c
            if (s(l) .ge. 0.0d+0) go to 580
               s(l) = -s(l)
               if (wantv) call dscal(p,-1.0d+0,v(1,l),1)
  580       continue
c
c           order the singular value.
c
  590       if (l .eq. mm) go to 600
c           ...exit
               if (s(l) .ge. s(l+1)) go to 600
               t = s(l)
               s(l) = s(l+1)
               s(l+1) = t
               if (wantv .and. l .lt. p)
     *            call dswap(p,v(1,l),1,v(1,l+1),1)
               if (wantu .and. l .lt. n)
     *            call dswap(n,u(1,l),1,u(1,l+1),1)
               l = l + 1
            go to 590
  600       continue
            iter = 0
            m = m - 1
  610    continue
      go to 360
  620 continue
      return
      end