1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
subroutine exch(nmax,n,a,z,l,ls1,ls2)
c Copyright INRIA
integer nmax,n,l,ls1,ls2
double precision a(nmax,n),z(nmax,n)
c!purpose
c given upper hessenberg matrix a
c with consecutive ls1xls1 and ls2xls2 diagonal blocks (ls1,ls2.le.2)
c starting at row/column l, exch produces equivalence transforma-
c tion zt that exchange the blocks along with their
c eigenvalues.
c
c!calling sequence
c
c subroutine exch(nmax,n,a,z,l,ls1,ls2)
c integer nmax,n,l,ls1,ls2
c double precision a(nmax,n),z(nmax,n)
c
c nmax the first dimension of a, b and z
c n the order of a, and z
c *a the matrix whose blocks are to be interchanged
c *z upon return this array is multiplied by the column
c transformation zt.
c l the position of the blocks
c ls1 the size of the first block
c ls2 the size of the second block
c
c!auxiliary routines
c drot (blas)
c giv
c max abs (fortran)
c!originator
c Delebecque f. and Steer s. INRIA adapted from exchqz (VanDooren)
c!
integer i,j,l1,l2,l3,li,lj,ll
double precision u(3,4),d,e,f,g,sa,sb
l1=l+1
ll=ls1+ls2
if (ll.gt.2) go to 50
c ** interchange 1x1 and 1x1 blocks via an equivalence
c ** transformation a:=z'*a*z ,
c ** where z is givens rotation
f=max(abs(a(l1,l1)),1.0d+0)
sa=a(l1,l1)/f
sb=1.0d+0/f
f=sa-sb*a(l,l)
c construct the column transformation z
g=-sb*a(l,l1)
call giv(f,g,d,e)
call drot(l1,a(1,l),1,a(1,l1),1,e,-d)
call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c construct the row transformation q
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,e,-d)
a(l1,l)=0.0d+0
return
c ** interchange 1x1 and 2x2 blocks via an equivalence
c ** transformation a:=z2'*z1'*a*z1*z2 ,
c ** where each zi is a givens rotation
50 l2=l+2
if(ls1.eq.2) go to 100
g=max(abs(a(l,l)),1.0d+0)
c * evaluate the pencil at the eigenvalue corresponding
c * to the 1x1 block
60 sa=a(l,l)/g
sb=1.0d+0/g
do 80 j=1,2
lj=l+j
do 80 i=1,3
li=l+i-1
u(i,j)=-sb*a(li,lj)
80 if(li.eq.lj) u(i,j)=u(i,j)+sa
call giv(u(3,1),u(3,2),d,e)
call drot(3,u(1,1),1,u(1,2),1,e,-d)
c perform the row transformation z1'
call giv(u(1,1),u(2,1),d,e)
u(2,2)=-u(1,2)*e+u(2,2)*d
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
c perform the column transformation z1
call drot(l2,a(1,l),1,a(1,l1),1,d,e)
call drot(n,z(1,l),1,z(1,l1),1,d,e)
c perform the row transformation z2'
call giv(u(2,2),u(3,2),d,e)
call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
c perform the column transformation z2
call drot(l2,a(1,l1),1,a(1,l2),1,d,e)
call drot(n,z(1,l1),1,z(1,l2),1,d,e)
c put the neglectable elements equal to zero
a(l2,l)=0.0d+0
a(l2,l1)=0.0d+0
return
c ** interchange 2x2 and 1x1 blocks via an equivalence
c ** transformation a:=z2'*z1'*a*z1*z2 ,
c ** where each zi is a givens rotation
100 if(ls2.eq.2) go to 150
g=max(abs(a(l2,l2)),1.0d+0)
c * evaluate the pencil at the eigenvalue corresponding
c * to the 1x1 block
120 sa=a(l2,l2)/g
sb=1.0d+0/g
do 130 i=1,2
li=l+i-1
do 130 j=1,3
lj=l+j-1
u(i,j)=-sb*a(li,lj)
130 if(i.eq.j) u(i,j)=u(i,j)+sa
call giv (u(1,1),u(2,1),d,e)
call drot(3,u(1,1),3,u(2,1),3,d,e)
c perform the column transformation z1
call giv (u(2,2),u(2,3),d,e)
u(1,2)=u(1,2)*e-u(1,3)*d
call drot(l2,a(1,l1),1,a(1,l2),1,e,-d)
call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
c perform the row transformation z1'
call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,e,-d)
c perform the column transformation z2
call giv (u(1,1),u(1,2),d,e)
call drot(l2,a(1,l),1,a(1,l1),1,e,-d)
call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c perform the row transformation z2'
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,e,-d)
c put the neglectable elements equal to zero
140 a(l1,l)=0.0d+0
a(l2,l)=0.0d+0
return
c ** interchange 2x2 and 2x2 blocks via a sequence of
c ** equivalence transformations
c ** a:=z5'*z4'*z3'*z2'*z1'*a*z1*z2*z3*z4*z5
c ** where each zi is a givens rotation
150 l3=l+3
d=a(l2,l2)*a(l3,l3)-a(l2,l3)*a(l3,l2)
e=a(l2,l2)+a(l3,l3)
call dmmul(a(l,l),nmax,a(l,l),nmax,u,3,2,4,4)
do 20 i=1,2
u(i,i)=u(i,i)+d
do 10 j=1,4
u(i,j)=u(i,j)-e*a(l-1+i,l-1+j)
10 continue
20 continue
c g0
call giv(u(1,1),u(2,1),d,e)
call drot(4,u(1,1),3,u(2,1),3,d,e)
c z1
call giv(u(2,4),u(2,3),d,e)
call drot(2,u(1,4),1,u(1,3),1,d,e)
call drot(l3,a(1,l3),1,a(1,l2),1,d,e)
call drot(n,z(1,l3),1,z(1,l2),1,d,e)
c z1'
call drot(n-l+1,a(l3,l),nmax,a(l2,l),nmax,d,e)
c z2
call giv(u(2,4),u(2,2),d,e)
call drot(2,u(1,4),1,u(1,2),1,d,e)
call drot(l3,a(1,l3),1,a(1,l1),1,d,e)
call drot(n,z(1,l3),1,z(1,l1),1,d,e)
c z2'
u(2,4)=d*u(2,4)
call drot(n-l+1,a(l3,l),nmax,a(l1,l),nmax,d,e)
c z3
call giv(u(1,3),u(1,2),d,e)
call drot(1,u(1,3),1,u(1,2),1,d,e)
call drot(l3,a(1,l2),1,a(1,l1),1,d,e)
call drot(n,z(1,l2),1,z(1,l1),1,d,e)
c z3'
u(2,4)=d*u(2,4)
call drot(n-l+1,a(l2,l),nmax,a(l1,l),nmax,d,e)
c z4
call giv(u(1,3),u(1,1),d,e)
call drot(l3,a(1,l2),1,a(1,l),1,d,e)
call drot(n,z(1,l2),1,z(1,l),1,d,e)
c z4'
call drot(n-l+1,a(l2,l),nmax,a(l,l),nmax,d,e)
c zeroes negligible elements
a(l2,l)=0.0d+0
a(l3,l)=0.0d+0
a(l2,l1)=0.0d+0
a(l3,l1)=0.0d+0
return
end
|