File: exchqz.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (264 lines) | stat: -rw-r--r-- 9,880 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        subroutine exchqz(nmax,n,a,b,z,l,ls1,ls2,eps,fail)
        integer nmax,n,l,ls1,ls2
        double precision a(nmax,n),b(nmax,n),z(nmax,n),eps
        logical fail
c!purpose
c  given the upper triangular matrix b and upper hessenberg matrix a
c  with consecutive ls1xls1 and ls2xls2 diagonal blocks (ls1,ls2.le.2)
c  starting at row/column l, exchqz produces equivalence transforma-
c  tions qt and zt that exchange the blocks along with their generalized
c  eigenvalues.
c
c!calling sequence
c
c     subroutine exchqz(nmax,n,a,b,z,l,ls1,ls2,eps,fail)
c     integer nmax,n,l,ls1,ls2
c     double precision a(nmax,n),b(nmax,n),z(nmax,n),eps
c     logical fail
c
c     nmax     the first dimension of a, b and z
c     n        the order of a, b and z
c    *a,*b     the matrix pair whose blocks are to be interchanged
c    *z        upon return this array is multiplied by the column
c              transformation zt.
c     l        the position of the blocks
c     ls1      the size of the first block
c     ls2      the size of the second block
c     eps      the required absolute accuracy of the result
c    *fail     a logical variable which is false on a normal return,
c              true otherwise.
c
c!auxiliary routines
c     drot (blas)
c     giv
c     max abs (fortran)
c!originator
c     VanDooren
c!
      integer i,j,l1,l2,l3,li,lj,ll,it1,it2
      double precision u(3,3),d,e,f,g,sa,sb,a11b11,a21b11,a12b22,
     1 b12b22,a22b22
     1,ammbmm,anmbmm,amnbnn,bmnbnn,annbnn
      logical altb
      fail=.false.
      l1=l+1
      ll=ls1+ls2
      if (ll.gt.2) go to 50
c ** interchange 1x1 and 1x1 blocks via an equivalence
c ** transformation       a:=q*a*z , b:=q*b*z
c ** where q and z are givens rotations
      f=max(abs(a(l1,l1)),abs(b(l1,l1)))
      altb=.true.
      if(abs(a(l1,l1)).ge.f) altb=.false.
      sa=a(l1,l1)/f
      sb=b(l1,l1)/f
      f=sa*b(l,l)-sb*a(l,l)
c construct the column transformation z
      g=sa*b(l,l1)-sb*a(l,l1)
      call giv(f,g,d,e)
      call drot(l1,a(1,l),1,a(1,l1),1,e,-d)
      call drot(l1,b(1,l),1,b(1,l1),1,e,-d)
      call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c construct the row transformation q
      if (altb) call giv(b(l,l),b(l1,l),d,e)
      if (.not.altb) call giv(a(l,l),a(l1,l),d,e)
      call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
      call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
      a(l1,l)=0.0d+0
      b(l1,l)=0.0d+0
      return
c ** interchange 1x1 and 2x2 blocks via an equivalence
c ** transformation  a:=q2*q1*a*z1*z2 , b:=q2*q1*b*z1*z2
c ** where each qi and zi is a givens rotation
 50   l2=l+2
      if(ls1.eq.2) go to 100
      g=max(abs(a(l,l)),abs(b(l,l)))
      altb=.true.
      if(abs(a(l,l)).lt.g) go to 60
      altb=.false.
      call giv(a(l1,l1),a(l2,l1),d,e)
      call drot(n-l,a(l1,l1),nmax,a(l2,l1),nmax,d,e)
      call drot(n-l,b(l1,l1),nmax,b(l2,l1),nmax,d,e)
c *  evaluate the pencil at the eigenvalue corresponding
c *  to the 1x1 block
 60   sa=a(l,l)/g
      sb=b(l,l)/g
      do 80 j=1,2
           lj=l+j
           do 80 i=1,3
               li=l+i-1
 80            u(i,j)=sa*b(li,lj)-sb*a(li,lj)
      call giv(u(3,1),u(3,2),d,e)
      call drot(3,u(1,1),1,u(1,2),1,e,-d)
c perform the row transformation q1
      call giv(u(1,1),u(2,1),d,e)
      u(2,2)=-u(1,2)*e+u(2,2)*d
      call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
      call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
c perform the column transformation z1
      if (altb) call giv(b(l1,l),b(l1,l1),d,e)
      if (.not.altb) call giv(a(l1,l),a(l1,l1),d,e)
      call drot(l2,a(1,l),1,a(1,l1),1,e,-d)
      call drot(l2,b(1,l),1,b(1,l1),1,e,-d)
      call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c perform the row transformation q2
      call giv(u(2,2),u(3,2),d,e)
      call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
      call drot(n-l+1,b(l1,l),nmax,b(l2,l),nmax,d,e)
c perform the column transformation z2
      if (altb) call giv (b(l2,l1),b(l2,l2),d,e)
      if (.not.altb) call giv(a(l2,l1),a(l2,l2),d,e)
      call drot(l2,a(1,l1),1,a(1,l2),1,e,-d)
      call drot(l2,b(1,l1),1,b(1,l2),1,e,-d)
      call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
      if (altb) go to 90
      call giv(b(l,l),b(l1,l),d,e)
      call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
      call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
c  put the neglectable elements equal to zero
 90   a(l2,l)=0.0d+0
      a(l2,l1)=0.0d+0
      b(l1,l)=0.0d+0
      b(l2,l)=0.0d+0
      b(l2,l1)=0.0d+0
      return
c ** interchange 2x2 and 1x1 blocks via an equivalence
c ** transformation  a:=q2*q1*a*z1*z2 , b:=q2*q1*b*z1*z2
c ** where each qi and zi is a givens rotation
 100  if(ls2.eq.2) go to 150
      g=max(abs(a(l2,l2)),abs(b(l2,l2)))
      altb=.true.
      if(abs(a(l2,l2)).lt.g) go to 120
      altb=.false.
      call giv(a(l,l),a(l1,l),d,e)
      call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
      call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
c *  evaluate the pencil at the eigenvalue corresponding
c *  to the 1x1 block
 120  sa=a(l2,l2)/g
      sb=b(l2,l2)/g
      do 130 i=1,2
           li=l+i-1
           do 130 j=1,3
               lj=l+j-1
 130           u(i,j)=sa*b(li,lj)-sb*a(li,lj)
      call giv (u(1,1),u(2,1),d,e)
      call drot(3,u(1,1),3,u(2,1),3,d,e)
c perform the column transformation z1
      call giv (u(2,2),u(2,3),d,e)
      u(1,2)=u(1,2)*e-u(1,3)*d
      call drot(l2,a(1,l1),1,a(1,l2),1,e,-d)
      call drot(l2,b(1,l1),1,b(1,l2),1,e,-d)
      call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
c perform the row transformation q1
      if (altb) call giv (b(l1,l1),b(l2,l1),d,e)
      if (.not.altb) call giv (a(l1,l1),a(l2,l1),d,e)
      call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
      call drot(n-l+1,b(l1,l),nmax,b(l2,l),nmax,d,e)
c perform the column transformation z2
      call giv (u(1,1),u(1,2),d,e)
      call drot(l2,a(1,l),1,a(1,l1),1,e,-d)
      call drot(l2,b(1,l),1,b(1,l1),1,e,-d)
      call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c perform the row transformation q2
      if(altb) call giv(b(l,l),b(l1,l),d,e)
      if(.not.altb) call giv(a(l,l),a(l1,l),d,e)
      call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
      call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
      if(altb) go to 140
      call giv(b(l1,l1),b(l2,l1),d,e)
      call drot(n-l,a(l1,l1),nmax,a(l2,l1),nmax,d,e)
      call drot(n-l,b(l1,l1),nmax,b(l2,l1),nmax,d,e)
c  put the neglectable elements equal to zero
 140  a(l1,l)=0.0d+0
      a(l2,l)=0.0d+0
      b(l1,l)=0.0d+0
      b(l2,1)=0.0d+0
      b(l2,l1)=0.0d+0
      return
c ** interchange 2x2 and 2x2 blocks via a sequence of
c ** qz-steps realized by the equivalence transformations
c **          a:=q5*q4*q3*q2*q1*a*z1*z2*z3*z4*z5
c **          b:=q5*q4*q3*q2*q1*b*z1*z2*z3*z4*z5
c ** where each qi and zi is a givens rotation
 150  l3=l+3
c compute implicit shift
      ammbmm=a(l,l)/b(l,l)
      anmbmm=a(l1,l)/b(l,l)
      amnbnn=a(l,l1)/b(l1,l1)
      annbnn=a(l1,l1)/b(l1,l1)
      bmnbnn=b(l,l1)/b(l1,l1)
      do 180 it1=1,3
        u(1,1)=1.0d+0
        u(2,1)=1.0d+0
        u(3,1)=1.0d+0
        do 180 it2=1,10
c perform row transformations q1 and q2
          call giv(u(2,1),u(3,1),d,e)
          call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
          call drot(n-l,b(l1,l1),nmax,b(l2,l1),nmax,d,e)
          u(2,1)=d*u(2,1)+e*u(3,1)
          call giv(u(1,1),u(2,1),d,e)
          call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
          call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
c perform column transformations z1 and z2
          call giv(b(l2,l1),b(l2,l2),d,e)
          call drot(l3,a(1,l1),1,a(1,l2),1,e,-d)
          call drot(l2,b(1,l1),1,b(1,l2),1,e,-d)
          call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
          call giv(b(l1,l),b(l1,l1),d,e)
          call drot(l3,a(1,l),1,a(1,l1),1,e,-d)
          call drot(l1,b(1,l),1,b(1,l1),1,e,-d)
          call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c perform transformations q3,z3,q4,z4,q5 and z5 in
c order to reduce the pencil to hessenberg form
          call giv(a(l2,l),a(l3,l),d,e)
          call drot(n-l+1,a(l2,l),nmax,a(l3,l),nmax,d,e)
          call drot(n-l1,b(l2,l2),nmax,b(l3,l2),nmax,d,e)
          call giv(b(l3,l2),b(l3,l3),d,e)
          call drot(l3,a(1,l2),1,a(1,l3),1,e,-d)
          call drot(l3,b(1,l2),1,b(1,l3),1,e,-d)
          call drot(n,z(1,l2),1,z(1,l3),1,e,-d)
          call giv(a(l1,l),a(l2,l),d,e)
          call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
          call drot(n-l,b(l1,l1),nmax,b(l2,l1),nmax,d,e)
          call giv(b(l2,l1),b(l2,l2),d,e)
          call drot(l3,a(1,l1),1,a(1,l2),1,e,-d)
          call drot(l2,b(1,l1),1,b(1,l2),1,e,-d)
          call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
          call giv(a(l2,l1),a(l3,l1),d,e)
          call drot(n-l,a(l2,l1),nmax,a(l3,l1),nmax,d,e)
          call drot(n-l1,b(l2,l2),nmax,b(l3,l2),nmax,d,e)
          call giv(b(l3,l2),b(l3,l3),d,e)
          call drot(l3,a(1,l2),1,a(1,l3),1,e,-d)
          call drot(l3,b(1,l2),1,b(1,l3),1,e,-d)
          call drot(n,z(1,l2),1,z(1,l3),1,e,-d)
c test of convergence on the element separating the blocks
          if(abs(a(l2,l1)).le.eps) go to 190
c compute a new shift in case of no convergence
          a11b11=a(l,l)/b(l,l)
          a12b22=a(l,l1)/b(l1,l1)
          a21b11=a(l1,l)/b(l,l)
          a22b22=a(l1,l1)/b(l1,l1)
          b12b22=b(l,l1)/b(l1,l1)
          u(1,1)=((ammbmm-a11b11)*(annbnn-a11b11)-amnbnn*anmbmm
     1         +anmbmm*bmnbnn*a11b11)/a21b11+a12b22-a11b11*b12b22
          u(2,1)=(a22b22-a11b11)-a21b11*b12b22-(ammbmm-a11b11)
     1         -(annbnn-a11b11)+anmbmm*bmnbnn
 180      u(3,1)=a(l2,l1)/b(l1,l1)
      fail=.true.
      return
c  put the neglectable elements equal to zero in
c  case of convergence
 190  a(l2,l)=0.0d+0
      a(l2,l1)=0.0d+0
      a(l3,l)=0.0d+0
      a(l3,l1)=0.0d+0
      b(l1,l)=0.0d+0
      b(l2,l)=0.0d+0
      b(l2,l1)=0.0d+0
      b(l3,l)=0.0d+0
      b(l3,l1)=0.0d+0
      b(l3,l2)=0.0d+0
      return
      end