1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
subroutine exchqz(nmax,n,a,b,z,l,ls1,ls2,eps,fail)
integer nmax,n,l,ls1,ls2
double precision a(nmax,n),b(nmax,n),z(nmax,n),eps
logical fail
c!purpose
c given the upper triangular matrix b and upper hessenberg matrix a
c with consecutive ls1xls1 and ls2xls2 diagonal blocks (ls1,ls2.le.2)
c starting at row/column l, exchqz produces equivalence transforma-
c tions qt and zt that exchange the blocks along with their generalized
c eigenvalues.
c
c!calling sequence
c
c subroutine exchqz(nmax,n,a,b,z,l,ls1,ls2,eps,fail)
c integer nmax,n,l,ls1,ls2
c double precision a(nmax,n),b(nmax,n),z(nmax,n),eps
c logical fail
c
c nmax the first dimension of a, b and z
c n the order of a, b and z
c *a,*b the matrix pair whose blocks are to be interchanged
c *z upon return this array is multiplied by the column
c transformation zt.
c l the position of the blocks
c ls1 the size of the first block
c ls2 the size of the second block
c eps the required absolute accuracy of the result
c *fail a logical variable which is false on a normal return,
c true otherwise.
c
c!auxiliary routines
c drot (blas)
c giv
c max abs (fortran)
c!originator
c VanDooren
c!
integer i,j,l1,l2,l3,li,lj,ll,it1,it2
double precision u(3,3),d,e,f,g,sa,sb,a11b11,a21b11,a12b22,
1 b12b22,a22b22
1,ammbmm,anmbmm,amnbnn,bmnbnn,annbnn
logical altb
fail=.false.
l1=l+1
ll=ls1+ls2
if (ll.gt.2) go to 50
c ** interchange 1x1 and 1x1 blocks via an equivalence
c ** transformation a:=q*a*z , b:=q*b*z
c ** where q and z are givens rotations
f=max(abs(a(l1,l1)),abs(b(l1,l1)))
altb=.true.
if(abs(a(l1,l1)).ge.f) altb=.false.
sa=a(l1,l1)/f
sb=b(l1,l1)/f
f=sa*b(l,l)-sb*a(l,l)
c construct the column transformation z
g=sa*b(l,l1)-sb*a(l,l1)
call giv(f,g,d,e)
call drot(l1,a(1,l),1,a(1,l1),1,e,-d)
call drot(l1,b(1,l),1,b(1,l1),1,e,-d)
call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c construct the row transformation q
if (altb) call giv(b(l,l),b(l1,l),d,e)
if (.not.altb) call giv(a(l,l),a(l1,l),d,e)
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
a(l1,l)=0.0d+0
b(l1,l)=0.0d+0
return
c ** interchange 1x1 and 2x2 blocks via an equivalence
c ** transformation a:=q2*q1*a*z1*z2 , b:=q2*q1*b*z1*z2
c ** where each qi and zi is a givens rotation
50 l2=l+2
if(ls1.eq.2) go to 100
g=max(abs(a(l,l)),abs(b(l,l)))
altb=.true.
if(abs(a(l,l)).lt.g) go to 60
altb=.false.
call giv(a(l1,l1),a(l2,l1),d,e)
call drot(n-l,a(l1,l1),nmax,a(l2,l1),nmax,d,e)
call drot(n-l,b(l1,l1),nmax,b(l2,l1),nmax,d,e)
c * evaluate the pencil at the eigenvalue corresponding
c * to the 1x1 block
60 sa=a(l,l)/g
sb=b(l,l)/g
do 80 j=1,2
lj=l+j
do 80 i=1,3
li=l+i-1
80 u(i,j)=sa*b(li,lj)-sb*a(li,lj)
call giv(u(3,1),u(3,2),d,e)
call drot(3,u(1,1),1,u(1,2),1,e,-d)
c perform the row transformation q1
call giv(u(1,1),u(2,1),d,e)
u(2,2)=-u(1,2)*e+u(2,2)*d
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
c perform the column transformation z1
if (altb) call giv(b(l1,l),b(l1,l1),d,e)
if (.not.altb) call giv(a(l1,l),a(l1,l1),d,e)
call drot(l2,a(1,l),1,a(1,l1),1,e,-d)
call drot(l2,b(1,l),1,b(1,l1),1,e,-d)
call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c perform the row transformation q2
call giv(u(2,2),u(3,2),d,e)
call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
call drot(n-l+1,b(l1,l),nmax,b(l2,l),nmax,d,e)
c perform the column transformation z2
if (altb) call giv (b(l2,l1),b(l2,l2),d,e)
if (.not.altb) call giv(a(l2,l1),a(l2,l2),d,e)
call drot(l2,a(1,l1),1,a(1,l2),1,e,-d)
call drot(l2,b(1,l1),1,b(1,l2),1,e,-d)
call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
if (altb) go to 90
call giv(b(l,l),b(l1,l),d,e)
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
c put the neglectable elements equal to zero
90 a(l2,l)=0.0d+0
a(l2,l1)=0.0d+0
b(l1,l)=0.0d+0
b(l2,l)=0.0d+0
b(l2,l1)=0.0d+0
return
c ** interchange 2x2 and 1x1 blocks via an equivalence
c ** transformation a:=q2*q1*a*z1*z2 , b:=q2*q1*b*z1*z2
c ** where each qi and zi is a givens rotation
100 if(ls2.eq.2) go to 150
g=max(abs(a(l2,l2)),abs(b(l2,l2)))
altb=.true.
if(abs(a(l2,l2)).lt.g) go to 120
altb=.false.
call giv(a(l,l),a(l1,l),d,e)
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
c * evaluate the pencil at the eigenvalue corresponding
c * to the 1x1 block
120 sa=a(l2,l2)/g
sb=b(l2,l2)/g
do 130 i=1,2
li=l+i-1
do 130 j=1,3
lj=l+j-1
130 u(i,j)=sa*b(li,lj)-sb*a(li,lj)
call giv (u(1,1),u(2,1),d,e)
call drot(3,u(1,1),3,u(2,1),3,d,e)
c perform the column transformation z1
call giv (u(2,2),u(2,3),d,e)
u(1,2)=u(1,2)*e-u(1,3)*d
call drot(l2,a(1,l1),1,a(1,l2),1,e,-d)
call drot(l2,b(1,l1),1,b(1,l2),1,e,-d)
call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
c perform the row transformation q1
if (altb) call giv (b(l1,l1),b(l2,l1),d,e)
if (.not.altb) call giv (a(l1,l1),a(l2,l1),d,e)
call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
call drot(n-l+1,b(l1,l),nmax,b(l2,l),nmax,d,e)
c perform the column transformation z2
call giv (u(1,1),u(1,2),d,e)
call drot(l2,a(1,l),1,a(1,l1),1,e,-d)
call drot(l2,b(1,l),1,b(1,l1),1,e,-d)
call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c perform the row transformation q2
if(altb) call giv(b(l,l),b(l1,l),d,e)
if(.not.altb) call giv(a(l,l),a(l1,l),d,e)
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
if(altb) go to 140
call giv(b(l1,l1),b(l2,l1),d,e)
call drot(n-l,a(l1,l1),nmax,a(l2,l1),nmax,d,e)
call drot(n-l,b(l1,l1),nmax,b(l2,l1),nmax,d,e)
c put the neglectable elements equal to zero
140 a(l1,l)=0.0d+0
a(l2,l)=0.0d+0
b(l1,l)=0.0d+0
b(l2,1)=0.0d+0
b(l2,l1)=0.0d+0
return
c ** interchange 2x2 and 2x2 blocks via a sequence of
c ** qz-steps realized by the equivalence transformations
c ** a:=q5*q4*q3*q2*q1*a*z1*z2*z3*z4*z5
c ** b:=q5*q4*q3*q2*q1*b*z1*z2*z3*z4*z5
c ** where each qi and zi is a givens rotation
150 l3=l+3
c compute implicit shift
ammbmm=a(l,l)/b(l,l)
anmbmm=a(l1,l)/b(l,l)
amnbnn=a(l,l1)/b(l1,l1)
annbnn=a(l1,l1)/b(l1,l1)
bmnbnn=b(l,l1)/b(l1,l1)
do 180 it1=1,3
u(1,1)=1.0d+0
u(2,1)=1.0d+0
u(3,1)=1.0d+0
do 180 it2=1,10
c perform row transformations q1 and q2
call giv(u(2,1),u(3,1),d,e)
call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
call drot(n-l,b(l1,l1),nmax,b(l2,l1),nmax,d,e)
u(2,1)=d*u(2,1)+e*u(3,1)
call giv(u(1,1),u(2,1),d,e)
call drot(n-l+1,a(l,l),nmax,a(l1,l),nmax,d,e)
call drot(n-l+1,b(l,l),nmax,b(l1,l),nmax,d,e)
c perform column transformations z1 and z2
call giv(b(l2,l1),b(l2,l2),d,e)
call drot(l3,a(1,l1),1,a(1,l2),1,e,-d)
call drot(l2,b(1,l1),1,b(1,l2),1,e,-d)
call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
call giv(b(l1,l),b(l1,l1),d,e)
call drot(l3,a(1,l),1,a(1,l1),1,e,-d)
call drot(l1,b(1,l),1,b(1,l1),1,e,-d)
call drot(n,z(1,l),1,z(1,l1),1,e,-d)
c perform transformations q3,z3,q4,z4,q5 and z5 in
c order to reduce the pencil to hessenberg form
call giv(a(l2,l),a(l3,l),d,e)
call drot(n-l+1,a(l2,l),nmax,a(l3,l),nmax,d,e)
call drot(n-l1,b(l2,l2),nmax,b(l3,l2),nmax,d,e)
call giv(b(l3,l2),b(l3,l3),d,e)
call drot(l3,a(1,l2),1,a(1,l3),1,e,-d)
call drot(l3,b(1,l2),1,b(1,l3),1,e,-d)
call drot(n,z(1,l2),1,z(1,l3),1,e,-d)
call giv(a(l1,l),a(l2,l),d,e)
call drot(n-l+1,a(l1,l),nmax,a(l2,l),nmax,d,e)
call drot(n-l,b(l1,l1),nmax,b(l2,l1),nmax,d,e)
call giv(b(l2,l1),b(l2,l2),d,e)
call drot(l3,a(1,l1),1,a(1,l2),1,e,-d)
call drot(l2,b(1,l1),1,b(1,l2),1,e,-d)
call drot(n,z(1,l1),1,z(1,l2),1,e,-d)
call giv(a(l2,l1),a(l3,l1),d,e)
call drot(n-l,a(l2,l1),nmax,a(l3,l1),nmax,d,e)
call drot(n-l1,b(l2,l2),nmax,b(l3,l2),nmax,d,e)
call giv(b(l3,l2),b(l3,l3),d,e)
call drot(l3,a(1,l2),1,a(1,l3),1,e,-d)
call drot(l3,b(1,l2),1,b(1,l3),1,e,-d)
call drot(n,z(1,l2),1,z(1,l3),1,e,-d)
c test of convergence on the element separating the blocks
if(abs(a(l2,l1)).le.eps) go to 190
c compute a new shift in case of no convergence
a11b11=a(l,l)/b(l,l)
a12b22=a(l,l1)/b(l1,l1)
a21b11=a(l1,l)/b(l,l)
a22b22=a(l1,l1)/b(l1,l1)
b12b22=b(l,l1)/b(l1,l1)
u(1,1)=((ammbmm-a11b11)*(annbnn-a11b11)-amnbnn*anmbmm
1 +anmbmm*bmnbnn*a11b11)/a21b11+a12b22-a11b11*b12b22
u(2,1)=(a22b22-a11b11)-a21b11*b12b22-(ammbmm-a11b11)
1 -(annbnn-a11b11)+anmbmm*bmnbnn
180 u(3,1)=a(l2,l1)/b(l1,l1)
fail=.true.
return
c put the neglectable elements equal to zero in
c case of convergence
190 a(l2,l)=0.0d+0
a(l2,l1)=0.0d+0
a(l3,l)=0.0d+0
a(l3,l1)=0.0d+0
b(l1,l)=0.0d+0
b(l2,l)=0.0d+0
b(l2,l1)=0.0d+0
b(l3,l)=0.0d+0
b(l3,l1)=0.0d+0
b(l3,l2)=0.0d+0
return
end
|