File: expan.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (41 lines) | stat: -rw-r--r-- 955 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
       subroutine expan(a,la,b,lb,c,nmax)
c! but
c calcul des nmax premiers coefficients de la longue division de
c  b par a .On suppose a(1) non nul.
c!liste d'appel
c       subroutine expan(a,la,b,lb,c,nmax)
c  a vecteur de longueur la des coeffs par puissances croissantes
c  b   "           "     lb        "                "          "
c  c                     nmax   des coeffs de  a/b
c
c!origine
c     F Delebecque INRIA 1986
c!
c     Copyright INRIA
      dimension a(la),b(lb),c(nmax)
       double precision a,b,c,s,a0
c
       m=la
       n=lb
       a0=a(1)
       if(a0.eq.0.0d+0)  return
       k=1
   2   continue
       s=0.0d+0
       if(k.eq.1) goto 8
       j=1
   5   continue
       j=j+1
       if(j.gt.min(m,k)) goto 8
       s=s+a(j)*c(k-j+1)
       goto 05
   8   continue
       if(k.le.n) then
       c(k)=(b(k)-s)/a0
       else
       c(k)=-s/a0
       endif
       if(k.eq.nmax) return
       k=k+1
       goto 2
       end