1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
|
SUBROUTINE FSTAIR (A, E, Q, Z, M, N, ISTAIR, RANKE, TOL,
* NBLCKS, IMUK, INUK, IMUK0, INUK0,
* MNEI, WRK, IWRK,IERR)
C PURPOSE:
C
C Given a pencil sE-A where matrix E is in column echelon form the
C subroutine FSTAIR computes according to the wishes of the user a
C unitary transformed pencil Q(sE-A)Z which is more or less similar
C to the generalized Schur form of the pencil sE-A.
C The subroutine yields also part of the Kronecker structure of
C the given pencil.
C
C CONTRIBUTOR: Th.G.J. Beelen (Philips Glass Eindhoven).
C Copyright SLICOT
C
C REVISIONS: 1988, February 02.
C
C***********************************************************************
C
C Philips Glass Eindhoven
C 5600 MD Eindhoven, Netherlands
C
C***********************************************************************
C FSTAIR - SLICOT Library Routine Document
C
C 1 PURPOSE:
C
C Given a pencil sE-A where matrix E is in column echelon form the
C subroutine FSTAIR computes according to the wishes of the user a
C unitary transformed pencil Q(sE-A)Z which is more or less similar
C to the generalized Schur form of the pencil sE-A. The computed form
C yields part of the Kronecker structure of the given pencil.
C
C 2 SPECIFICATION:
C
C SUBROUTINE FSTAIR(A, LDA, E, Q, LDQ, Z, LDZ, M, N, ISTAIR, RANKE,
C NBLCKS, IMUK, INUK, IMUK0, INUK0, MNEI,
C WRK, IWRK, TOL, MODE, IERR)
C INTEGER LDA, LDQ, LDZ, M, N, RANKE, NBLCKS, MODE, IERR
C INTEGER ISTAIR(M), IMUK(N), INUK(M+1), IMUK0(N), INUK0(M+1),
C INTEGER MNEI(4), IWRK(N)
C DOUBLE PRECISION TOL
C DOUBLE PRECISION WRK(N)
C DOUBLE PRECISION A(LDA,N), E(LDA,N), Q(LDQ,M), Z(LDZ,N)
C
C 3 ARGUMENT LIST:
C
C 3.1 ARGUMENTS IN
C
C A - DOUBLE PRECISION array of DIMENSION (LDA,N).
C The leading M x N part of this array contains the M x N
C matrix A that has to be row compressed.
C NOTE: this array is overwritten.
C
C LDA - INTEGER
C LDA is the leading dimension of the arrays A and E.
C (LDA >= M)
C
C E - DOUBLE PRECISION array of DIMENSION (LDA,N).
C The leading M x N part of this array contains the M x N
C matrix E which will be transformed equivalent to matrix
C A.
C On entry, matrix E has to be in column echelon form.
C This may be accomplished by subroutine EREDUC.
C NOTE: this array is overwritten.
C
C Q - DOUBLE PRECISION array of DIMENSION (LDQ,M).
C The leading M x M part of this array contains an M x M
C unitary row transformation matrix corresponding to the
C row transformations of the matrices A and E which are
C needed to transform an arbitrary pencil to a pencil
C where E is in column echelon form.
C NOTE: this array is overwritten.
C
C LDQ - INTEGER
C LDQ is the leading dimension of the array Q.
C (LDQ >= M)
C
C Z - DOUBLE PRECISION array of DIMENSION (LDZ,N).
C The leading N x N part of this array contains an N x N
C unitary column transformation matrix corresponding to
C the column transformations of the matrices A and E
C which are needed to transform an arbitrary pencil to
C a pencil where E is in column echelon form.
C NOTE: this array is overwritten.
C
C LDZ - INTEGER
C LDZ is the leading dimension of the array Z.
C (LDZ >= N)
C
C M - INTEGER
C M is the number of rows of the matrices A, E and Q.
C
C N - INTEGER
C N is the number of columns of the matrices A, E and Z.
C
C ISTAIR - INTEGER array of DIMENSION (M).
C ISTAIR contains the information on the column echelon
C form of the input matrix E. This may be accomplished
C by subroutine EREDUC.
C ISTAIR(i) = + j if the boundary element E(i,j) is a
C corner point.
C - j if the boundary element E(i,j) is not
C a corner point.
C (i=1,...,M)
C NOTE: this array is destroyed.
C
C RANKE - INTEGER
C RANKE is the rank of the input matrix E being in column
C echelon form.
C
C 3.2 ARGUMENTS OUT
C
C A - DOUBLE PRECISION array of DIMENSION (LDA,N).
C The leading M x N part of this array contains the M x N
C matrix A that has been row compressed while keeping E
C in column echelon form.
C
C E - DOUBLE PRECISION array of DIMENSION (LDA,N).
C The leading M x N part of this array contains the M x N
C matrix E that has been transformed equivalent to matrix
C A.
C
C Q - DOUBLE PRECISION array of DIMENSION (LDQ,M).
C The leading M x M part of this array contains the M x M
C unitary matrix Q which is the product of the input
C matrix Q and the row transformation matrix which has
C transformed the rows of the matrices A and E.
C
C Z - DOUBLE PRECISION array of DIMENSION (LDZ,N).
C The leading N x N part of this array contains the N x N
C unitary matrix Z which is the product of the input
C matrix Z and the column transformation matrix which has
C transformed the columns of the matrices A and E.
C
C NBLCKS - INTEGER
C NBLCKS is the number of submatrices having
C full row rank >= 0 detected in matrix A.
C
C IMUK - INTEGER array of DIMENSION (N).
C Array IMUK contains the column dimensions mu(k)
C (k=1,...,NBLCKS) of the submatrices having full column
C rank in the pencil sE(x)-A(x)
C where x = eps,inf if MODE = 1 or 2
C eps MODE = 3 .
C
C INUK - INTEGER array of DIMENSION (M+1).
C Array INUK contains the row dimensions nu(k)
C (k=1,...,NBLCKS) of the submatrices having full row
C rank in the pencil sE(x)-A(x)
C where x = eps,inf if MODE = 1 or 2
C eps MODE = 3 .
C
C IMUK0 - INTEGER array of DIMENSION (N).
C Array IMUK0 contains the column dimensions mu(k)
C (k=1,...,NBLCKS) of the submatrices having full column
C rank in the pencil sE(eps,inf)-A(eps,inf).
C
C INUK0 - INTEGER array of DIMENSION (M+1).
C Array INUK0 contains the row dimensions nu(k)
C (k=1,...,NBLCKS) of the submatrices having full row
C rank in the pencil sE(eps,inf)-A(eps,inf).
C
C MNEI - INTEGER array of DIMENSION (4).
C If MODE = 3 then
C MNEI(1) = row dimension of sE(eps)-A(eps)
C 2 = column dimension of sE(eps)-A(eps)
C 3 = row dimension of sE(inf)-A(inf)
C 4 = column dimension of sE(inf)-A(inf)
C If MODE = 1 or 2 then the array MNEI is empty.
C
C 3.3 WORK SPACE
C
C WRK - DOUBLE PRECISION array of DIMENSION (N).
C
C IWRK - INTEGER array of DIMENSION (N).
C
C 3.4 TOLERANCES
C
C TOL - DOUBLE PRECISION
C TOL is the tolerance used when considering matrix
C elements to be zero. TOL should be set to
C TOL = RE * max( ||A|| , ||E|| ) + AE , where
C ||.|| is the Frobenius norm. AE and RE are the absolute
C and relative accuracy.
C A recommanded choice is AE = EPS and RE = 100*EPS,
C where EPS is the machine precision.
C
C 3.5 MODE PARAMETERS
C
C MODE - INTEGER
C According to the value of MODE the subroutine FSTAIR
C computes a generalized Schur form of the pencil sE-A,
C where the structure of the generalized Schur form is
C specified more the higher the value of MODE is.
C (See also 6 DESCRIPTION).
C
C 3.6 ERROR INDICATORS
C
C IERR - INTEGER
C On return, IERR contains 0 unless the subroutine
C has failed.
C
C 4 ERROR INDICATORS and WARNINGS:
C
C IERR = -1: the value of MODE is not 1, 2 or 3.
C IERR = 0: succesfull completion.
C IERR = 1: the algorithm has failed.
C
C 5 AUXILARY ROUTINES and COMMON BLOCKS:
C
C BAE, SQUAEK, TRIRED from SLICOT.
C
C 6 DESCRIPTION:
C
C On entry, matrix E is assumed to be in column echelon form.
C Depending on the value of the parameter MODE, submatrices of A
C and E will be reduced to a specific form. The higher the value of
C MODE, the more the submatrices are transformed.
C
C Step 1 of the algorithm.
C If MODE = 1 then subroutine FSTAIR transforms the matrices A and
C E to the following generalized Schur form by unitary transformations
C Q1 and Z1, using subroutine BAE. (See also Algorithm 3.2.1 in [1]).
C
C | sE(eps,inf)-A(eps,inf) | X |
C Q1(sE-A)Z1 = |------------------------|------------|
C | O | sE(r)-A(r) |
C
C Here the pencil sE(eps,inf)-A(eps,inf) is in staircase form.
C This pencil contains all Kronecker column indices and infinite
C elementary divisors of the pencil sE-A.
C The pencil sE(r)-A(r) contains all Kronecker row indices and
C elementary divisors of sE-A.
C NOTE: X is a pencil.
C
C Step 2 of the algorithm.
C If MODE = 2 then furthermore the submatrices having full row and
C column rank in the pencil sE(eps,inf)-A(eps,inf) are triangularized
C by applying unitary transformations Q2 and Z2 to Q1*(sE-A)*Z1. This
C is done by subroutine TRIRED. (see also Algorithm 3.3.1 [1]).
C
C Step 3 of the algorithm.
C If MODE = 3 then moreover the pencils sE(eps)-A(eps) and
C sE(inf)-A(inf) are separated in sE(eps,inf)-A(eps,inf) by applying
C unitary transformations Q3 and Z3 to Q2*Q1*(sE-A)*Z1*Z2. This is
C done by subroutine SQUAEK. (See also Algorithm 3.3.3 in [1]).
C We then obtain
C
C | sE(eps)-A(eps) | X | X |
C |----------------|----------------|------------|
C | O | sE(inf)-A(inf) | X |
C Q(sE-A)Z = |=================================|============| (1)
C | | |
C | O | sE(r)-A(r) |
C
C where Q = Q3*Q2*Q1 and Z = Z1*Z2*Z3.
C The accumulated row and column transformations are multiplied on
C the left and right respectively with the contents of the arrays Q
C and Z on entry and the results are stored in Q and Z, respectively.
C NOTE: the pencil sE(r)-A(r) is not reduced furthermore.
C
C Now let sE-A be an arbitrary pencil. This pencil has to be
C transformed into a pencil with E in column echelon form before
C calling FSTAIR. This may be accomplished by the subroutine EREDUC.
C Let the therefore needed unitary row and column transformations be
C Q0 and Z0, respectively.
C Let, on entry, the arrays Q and Z contain Q0 and Z0, and let ISTAIR
C contain the appropiate information. Then, on return with MODE = 3,
C the contents of the arrays Q and Z are Q3*Q2*Q1*Q0 and Z0*Z1*Z2*Z3
C which are the transformation matrices that transform the arbitrary
C pencil sE-A into the form (1).
C
C 7 REFERENCES:
C
C [1] Th.G.J. Beelen, New Algorithms for Computing the Kronecker
C structure of a Pencil with Applications to Systems and Control
C Theory, Ph.D.Thesis, Eindhoven University of Technology,
C The Netherlands, 1987.
C
C 8 NUMERICAL ASPECTS:
C
C It is shown in [1] that the algorithm is numerically backward
C stable. The operations count is proportional to (max(M,N))**3 .
C
C 9 FURTHER REMARKS:
C
C - The difference mu(k)-nu(k) = # Kronecker blocks of size kx(k+1).
C The number of these blocks is given by NBLCKS.
C - The difference nu(k)-mu(k+1) = # infinite elementary divisors of
C degree k (here mu(NBLCKS+1) := 0).
C - MNEI(3) = MNEI(4) since pencil sE(inf)-A(inf) is regular.
C - In the pencil sE(r)-A(r) the pencils sE(f)-A(f) and sE(eta)-A(eta)
C can be separated by pertransposing the pencil sE(r)-A(r) and
C using the last part of subroutine FSTAIR. The result has got to be
C pertransposed again. (For more details see section 3.3.1 in [1]).
C
C***********************************************************************
C
C .. Scalar arguments ..
C
INTEGER LDA, LDQ, LDZ, M, N, RANKE, NBLCKS, MODE, IERR
DOUBLE PRECISION TOL
C
C .. Array arguments ..
C
INTEGER ISTAIR(M), IMUK(N), INUK(M+1), IMUK0(N), INUK0(M+1),
* MNEI(4), IWRK(N)
DOUBLE PRECISION A(M,N), E(M,N), Q(M,M), Z(N,N),
* WRK(N)
C
C EXTERNAL SUBROUTINES/FUNCTIONS:
C
C BAE, SQUAEK, TRIRED from SLICOT.
C
C Local variables.
C
INTEGER MEI, NEI, IFIRA, IFICA, NRA, NCA, JK, RANKA,
* ISMUK, ISNUK, I, K
C
LDA=M
LDE=M
LDQ=M
LDZ=N
MODE=3
IERR = 0
C
C A(k) is the submatrix in A that will be row compressed.
C
C ISMUK= sum(i=1,..,k) MU(i), ISNUK= sum(i=1,...,k) NU(i),
C IFIRA, IFICA: first row and first column index of A(k) in A.
C NRA, NCA: number of rows and columns in A(k).
C
IFIRA = 1
IFICA = 1
NRA = M
NCA = N - RANKE
ISNUK = 0
ISMUK = 0
C
C NBLCKS = # blocks detected in A with full row rank >= 0.
C
NBLCKS = 0
K = 0
C
C Initialization of the arrays INUK and IMUK.
C
DO 10 I = 1, M + 1
INUK(I) = -1
10 CONTINUE
C
C Note: it is necessary that array INUK has dimension M+1 since it
C is possible that M = 1 and NBLCKS = 2.
C Example sE-A = (0 0 s -1).
C
DO 20 I = 1, N
IMUK(I) = -1
20 CONTINUE
C
C Compress the rows of A while keeping E in column echelon form.
C
C REPEAT
C
30 K = K + 1
CALL BAE(A, LDA, E, Q, LDQ, Z, LDZ, M, N, ISTAIR, IFIRA,
* IFICA, NCA, RANKA, WRK, IWRK, TOL)
IMUK(K) = NCA
ISMUK = ISMUK + NCA
INUK(K) = RANKA
ISNUK = ISNUK + RANKA
NBLCKS = NBLCKS + 1
C
C If rank of A(k) = nrb then A has full row rank ;
C JK = first column index (in A) after right most column of
C matrix A(k+1).
C (in case A(k+1) is empty, then JK = N+1).
C
IFIRA = 1 + ISNUK
IFICA = 1 + ISMUK
IF (IFIRA .GT. M) THEN
JK = N + 1
ELSE
JK = IABS(ISTAIR(IFIRA))
END IF
NRA = M - ISNUK
NCA = JK - 1 - ISMUK
C
C If NCA > 0 then there can be done some more row compression
C of matrix A while keeping matrix E in column echelon form.
C
IF (NCA .GT. 0) GOTO 30
C UNTIL NCA <= 0
C
C Matrix E(k+1) has full column rank since NCA = 0.
C Reduce A and E by ignoring all rows and columns corresponding
C to E(k+1).
C Ignoring these columns in E changes the ranks of the
C submatrices E(i), (i=1,...,k-1).
C
C MEI and NEI are the dimensions of the pencil
C sE(eps,inf)-A(eps,inf), i.e., the pencil that contains only
C Kronecker column indices and infinity elementary divisors.
C
MEI = ISNUK
NEI = ISMUK
C
C Save dimensions of the submatrices having full row or column rank
C in pencil sE(eps,inf)-A(eps,inf), i.e., copy the arrays
C IMUK and INUK to IMUK0 and INUK0, respectively.
C
DO 40 I = 1, M + 1
INUK0(I) = INUK(I)
40 CONTINUE
C
DO 50 I = 1, N
IMUK0(I) = IMUK(I)
50 CONTINUE
C
IF (MODE .EQ. 1) RETURN
C
C Triangularization of the submatrices in A and E.
C
CALL TRIRED(A, LDA, E, Q, LDQ, Z, LDZ, M, N, NBLCKS, INUK, IMUK,
* IERR)
C
IF (IERR .NE. 0) then
c write(6,*) 'error: fstair failed!'
return
endif
C
IF (MODE .EQ. 2) RETURN
C
C Reduction to square submatrices E(k)'s in E.
C
CALL SQUAEK(A, LDA, E, Q, LDQ, Z, LDZ, M, N, NBLCKS, INUK, IMUK,
* MNEI)
C
RETURN
C *** Last line of FSTAIR *********************************************
END
SUBROUTINE SQUAEK(A, LDA, E, Q, LDQ, Z, LDZ, M, N, NBLCKS,
* INUK, IMUK, MNEI)
C
C PURPOSE:
C
C On entry, it is assumed that the M by N matrices A and E have
C been obtained after applying the Algorithms 3.2.1 and 3.3.1 to
C the pencil s*E - A as described in [1], i.e.,
C
C | s*E(eps,inf)-A(eps,inf) | X |
C Q(s*E - A)Z = |-------------------------|-------------|
C | 0 | s*E(r)-A(r) |
C
C Here the pencil s*E(eps,inf)-A(eps,inf) is in staircase form.
C This pencil contains all Kronecker column indices and infinite
C elementary divisors of the pencil s*E - A.
C The pencil s*E(r)-A(r) contains all Kronecker row indices and
C finite elementary divisors of s*E - A.
C Furthermore, the submatrices having full row and column rank in
C the pencil s*E(eps,inf)-A(eps,inf) are assumed to be triangu-
C larized.
C Subroutine SQUAEK separates the pencils s*E(eps)-A(eps) and
C s*E(inf)-A(inf) in s*E(eps,inf)-A(eps,inf) using Algorithm 3.3.3
C in [1]. The result then is
C
C Q(s*E - A)Z =
C
C | s*E(eps)-A(eps) | X | X |
C |-----------------|-----------------|-------------|
C | 0 | s*E(inf)-A(inf) | X |
C |===================================|=============|
C | | |
C | 0 | s*E(r)-A(r) |
C
C Note that the pencil s*E(r)-A(r) is not reduced furthermore.
C REMARK: This routine is intended to be called only from the
C SLICOT routine FSTAIR.
C
C PARAMETERS:
C
C A - DOUBLE PRECISION array of dimension (LDA,N).
C On entry, it contains the matrix AA to be reduced.
C On return, it contains the transformed matrix AA.
C E - DOUBLE PRECISION array of dimension (LDA,N).
C On entry, it contains the matrix EE to be reduced.
C On return, it contains the transformed matrix EE.
C Q - DOUBLE PRECISION array of dimension (LDQ,M).
C On entry, Q contains the row transformations corresponding to
C to the input matrices A and E.
C On return, it contains the product of the input matrix Q and
C the row transformation matrix that has transformed the rows
C of the matrices A and E.
C Z - DOUBLE PRECISION array of dimension (LDZ,N).
C On entry, Z contains the column transformations corresponding
C to the input matrices A and E.
C On return, it contains the product of the input matrix Z and
C the column transformation matrix that has transformed the
C columns of the matrices A and E.
C M - INTEGER.
C Number of rows of A and E. 1 <= M <= LDA.
C N - INTEGER.
C Number of columns of A and E. N >= 1.
C NBLCKS - INTEGER.
C Number of submatrices having full row rank >=0 in A(eps,inf).
C INUK - INTEGER array of dimension (NBLCKS).
C On entry, INUK contains the row dimensions nu(k),
C (k=1,..,NBLCKS) of the submatrices having full row rank in the
C pencil s*E(eps,inf)-A(eps,inf).
C On return, INUK contains the row dimensions nu(k),
C (k=1,..,NBLCKS) of the submatrices having full row rank in the
C pencil s*E(eps)-A(eps).
C IMUK - INTEGER array of dimension (NBLCKS).
C On entry, IMUK contains the column dimensions mu(k),
C (k=1,..,NBLCKS) of the submatrices having full column rank in
C the pencil s*E(eps,inf)-A(eps,inf).
C On return, IMUK contains the column dimensions mnu(k),
C (k=1,..,NBLCKS) of the submatrices having full column rank in
C the pencil s*E(eps)-A(eps).
C MNEI - INTEGER array of dimension (4).
C MNEI(1) = MEPS = row dimension of s*E(eps)-A(eps),
C 2 = NEPS = column dimension of s*E(eps)-A(eps),
C 3 = MINF = row dimension of s*E(inf)-A(inf),
C 4 = NINF = column dimension of s*E(inf)-A(inf).
C
C REFERENCES:
C
C [1] Th.G.J. Beelen, New Algorithms for Computing the Kronecker
C structure of a Pencil with Applications to Systems and
C Control Theory, Ph.D.Thesis, Eindhoven University of
C Technology, The Netherlands, 1987.
C
C CONTRIBUTOR: Th.G.J. Beelen (Philips Glas Eindhoven)
C
C REVISIONS: 1988, February 02.
C
C Specification of the parameters.
C
C .. Scalar arguments ..
C
INTEGER LDA, LDQ, LDZ, M, N, NBLCKS
C
C .. Array arguments ..
C
DOUBLE PRECISION A(LDA,N), E(LDA,N), Q(LDQ,M), Z(LDZ,N)
INTEGER INUK(NBLCKS), IMUK(NBLCKS), MNEI(4)
C
C EXTERNAL SUBROUTINES:
C
C DGIV, DROTI from SLICOT.
C
C Local variables.
C
DOUBLE PRECISION SC, SS
INTEGER SK1P1, TK1P1, TP1, TP
INTEGER ISMUK, ISNUK, MUKP1, MUK, NUK
INTEGER IP, J, K, MUP, MUP1, NUP, NELM
INTEGER MEPS, NEPS, MINF, NINF
INTEGER RA, CA, RE, CE, RJE, CJE, CJA
C
C Initialisation.
C
ISMUK = 0
ISNUK = 0
DO 10 K = 1, NBLCKS
ISMUK = ISMUK + IMUK(K)
ISNUK = ISNUK + INUK(K)
10 CONTINUE
C
C MEPS, NEPS are the dimensions of the pencil s*E(eps)-A(eps).
C MEPS = Sum(k=1,...,nblcks) NU(k),
C NEPS = Sum(k=1,...,nblcks) MU(k).
C MINF, NINF are the dimensions of the pencil s*E(inf)-A(inf).
C
MEPS = ISNUK
NEPS = ISMUK
MINF = 0
NINF = 0
C
C MUKP1 = mu(k+1). N.B. It is assumed that mu(NBLCKS + 1) = 0.
C
MUKP1 = 0
C
DO 60 K = NBLCKS, 1, -1
NUK = INUK(K)
MUK = IMUK(K)
C
C Reduce submatrix E(k,k+1) to square matrix.
C NOTE that always NU(k) >= MU(k+1) >= 0.
C
C WHILE ( NU(k) > MU(k+1) ) DO
20 IF (NUK .GT. MUKP1) THEN
C
C sk1p1 = sum(i=k+1,...,p-1) NU(i)
C tk1p1 = sum(i=k+1,...,p-1) MU(i)
C ismuk = sum(i=1,...,k) MU(i)
C tp1 = sum(i=1,...,p-1) MU(i) = ismuk + tk1p1.
C
SK1P1 = 0
TK1P1 = 0
DO 50 IP = K + 1, NBLCKS
C
C Annihilate the elements originally present in the last
C row of E(k,p+1) and A(k,p).
C Start annihilating the first MU(p) - MU(p+1) elements by
C applying column Givens rotations plus interchanging
C elements.
C Use original bottom diagonal element of A(k,k) as pivot.
C Start position pivot in A = (ra,ca).
C
TP1 = ISMUK + TK1P1
RA = ISNUK + SK1P1
CA = TP1
C
MUP = IMUK(IP)
MUP1 = INUK(IP)
NUP = MUP1
C
DO 30 J = 1, (MUP - NUP)
C
C CJA = current column index of pivot in A.
C
CJA = CA + J - 1
CALL DGIV(A(RA,CJA), A(RA,CJA+1), SC, SS)
C
C Apply transformations to A- and E-matrix.
C Interchange columns simultaneously.
C Update column transformation matrix Z.
C
NELM = RA
CALL DROTI(NELM, A(1,CJA), 1, A(1,CJA+1), 1, SC, SS)
A(RA,CJA) = 0.0D0
CALL DROTI(NELM, E(1,CJA), 1, E(1,CJA+1), 1, SC, SS)
CALL DROTI(N, Z(1,CJA), 1, Z(1,CJA+1), 1, SC, SS)
30 CONTINUE
C
C Annihilate the remaining elements originally present in
C the last row of E(k,p+1) and A(k,p) by alternatingly
C applying row and column rotations plus interchanging
C elements.
C Use diagonal elements of E(p,p+1) and original bottom
C diagonal element of A(k,k) as pivots, respectively.
C (re,ce) and (ra,ca) are the starting positions of the
C pivots in E and A.
C
RE = RA + 1
TP = TP1 + MUP
CE = 1 + TP
CA = TP - MUP1
C
DO 40 J = 1, MUP1
C
C (RJE,CJE) = current position pivot in E.
C
RJE = RE + J - 1
CJE = CE + J - 1
CJA = CA + J - 1
C
C Determine the row transformations.
C Apply these transformations to E- and A-matrix .
C Interchange the rows simultaneously.
C Update row transformation matrix Q.
C
CALL DGIV(E(RJE,CJE), E(RJE-1,CJE), SC, SS)
NELM = N - CJE + 1
CALL DROTI(NELM, E(RJE,CJE), LDA, E(RJE-1,CJE), LDA,
* SC, SS)
E(RJE,CJE) = 0.0D0
NELM = N - CJA + 1
CALL DROTI(NELM, A(RJE,CJA), LDA, A(RJE-1,CJA), LDA,
* SC, SS)
CALL DROTI(M, Q(RJE,1), LDQ, Q(RJE-1,1), LDQ, SC, SS)
C
C Determine the column transformations.
C Apply these transformations to A- and E-matrix.
C Interchange the columns simultaneously.
C Update column transformation matrix Z.
C
CALL DGIV(A(RJE,CJA), A(RJE,CJA+1), SC, SS)
NELM = RJE
CALL DROTI(NELM, A(1,CJA), 1, A(1,CJA+1), 1, SC, SS)
A(RJE,CJA) = 0.0D0
CALL DROTI(NELM, E(1,CJA), 1, E(1,CJA+1), 1, SC, SS)
CALL DROTI(N, Z(1,CJA), 1, Z(1,CJA+1), 1, SC, SS)
40 CONTINUE
C
SK1P1 = SK1P1 + NUP
TK1P1 = TK1P1 + MUP
C
50 CONTINUE
C
C Reduce A=A(eps,inf) and E=E(eps,inf) by ignoring their last
C row and right most column. The row and column ignored
C belong to the pencil s*E(inf)-A(inf).
C Redefine blocks in new A and E.
C
MUK = MUK - 1
NUK = NUK - 1
IMUK(K) = MUK
INUK(K) = NUK
ISMUK = ISMUK - 1
ISNUK = ISNUK - 1
MEPS = MEPS - 1
NEPS = NEPS - 1
MINF = MINF + 1
NINF = NINF + 1
C
GOTO 20
END IF
C END WHILE 20
C
C Now submatrix E(k,k+1) is square.
C
C Consider next submatrix (k:=k-1).
C
ISNUK = ISNUK - NUK
ISMUK = ISMUK - MUK
MUKP1 = MUK
60 CONTINUE
C
C If mu(NBLCKS) = 0, then the last submatrix counted in NBLCKS is
C a 0 by 0 (empty) matrix. This "matrix" must be removed.
C
IF (IMUK(NBLCKS) .EQ. 0) NBLCKS = NBLCKS - 1
C
C Store dimensions of the pencils s*E(eps)-A(eps) and
C s*E(inf)-A(inf) in array MNEI.
C
MNEI(1) = MEPS
MNEI(2) = NEPS
MNEI(3) = MINF
MNEI(4) = NINF
C
RETURN
C *** Last line of SQUAEK *********************************************
END
** END OF SQUAEKTEXT
SUBROUTINE TRIAAK(A, LDA, E, Z, LDZ, N, NRA, NCA, IFIRA, IFICA)
C
C PURPOSE:
C
C Subroutine TRIAAK reduces a submatrix A(k) of A to upper triangu-
C lar form by column Givens rotations only.
C Here A(k) = A(IFIRA:ma,IFICA:na) where ma = IFIRA - 1 + NRA,
C na = IFICA - 1 + NCA.
C Matrix A(k) is assumed to have full row rank on entry. Hence, no
C pivoting is done during the reduction process. See Algorithm 2.3.1
C and Remark 2.3.4 in [1].
C The constructed column transformations are also applied to matrix
C E(k) = E(1:IFIRA-1,IFICA:na).
C Note that in E columns are transformed with the same column
C indices as in A, but with row indices different from those in A.
C REMARK: This routine is intended to be called only from the
C SLICOT auxiliary routine TRIRED.
C
C PARAMETERS:
C
C A - DOUBLE PRECISION array of dimension (LDA,N).
C On entry, it contains the submatrix A(k) of full row rank
C to be reduced to upper triangular form.
C On return, it contains the transformed matrix A(k).
C E - DOUBLE PRECISION array of dimension (LDA,N).
C On entry, it contains the submatrix E(k).
C On return, it contains the transformed matrix E(k).
C Z - DOUBLE PRECISION array of dimension (LDZ,N).
C On entry, Z contains the column transformations corresponding
C to the input matrices A and E.
C On return, it contains the product of the input matrix Z and
C the column transformation matrix that has transformed the
C columns of the matrices A and E.
C N - INTEGER.
C Number of columns of A and E. (N >= 1).
C NRA - INTEGER.
C Number of rows in A(k) to be transformed (1 <= NRA <= LDA).
C NCA - INTEGER.
C Number of columns in A(k) to be transformed (1 <= NCA <= N).
C IFIRA - INTEGER.
C Number of first row in A(k) to be transformed.
C IFICA - INTEGER.
C Number of first column in A(k) to be transformed.
C
C REFERENCES:
C
C [1] Th.G.J. Beelen, New Algorithms for Computing the Kronecker
C structure of a Pencil with Applications to Systems and
C Control Theory, Ph.D.Thesis, Eindhoven University of
C Technology, The Netherlands, 1987.
C
C CONTRIBUTOR: Th.G.J. Beelen (Philips Glas Eindhoven)
C
C REVISIONS: 1988, January 29.
C
C Specification of the parameters.
C
C .. Scalar arguments ..
C
INTEGER LDA, LDZ, N, NRA, NCA, IFIRA, IFICA
C
C .. Array arguments ..
C
DOUBLE PRECISION A(LDA,N), E(LDA,N), Z(LDZ,N)
C
C EXTERNAL SUBROUTINES:
C
C DROT from BLAS
C DGIV from SLICOT.
C
C Local variables.
C
DOUBLE PRECISION SC, SS
INTEGER I, II, J, JJ, JJPVT, IFICA1, IFIRA1, MNI, NELM
C
IFIRA1 = IFIRA - 1
IFICA1 = IFICA - 1
C
DO 20 I = NRA, 1, -1
II = IFIRA1 + I
MNI = NCA - NRA + I
JJPVT = IFICA1 + MNI
NELM = IFIRA1 + I
DO 10 J = MNI - 1, 1, -1
JJ = IFICA1 + J
C
C Determine the Givens transformation on columns jj and jjpvt.
C Apply the transformation to these columns to annihilate
C A(ii,jj) (from rows 1 up to ifira1+i).
C Apply the transformation also to the E-matrix
C (from rows 1 up to ifira1).
C Update column transformation matrix Z.
C
CALL DGIV(A(II,JJPVT), A(II,JJ), SC, SS)
CALL DROT(NELM, A(1,JJPVT), 1, A(1,JJ), 1, SC, SS)
A(II,JJ) = 0.0D0
CALL DROT(IFIRA1, E(1,JJPVT), 1, E(1,JJ), 1, SC, SS)
CALL DROT(N, Z(1,JJPVT), 1, Z(1,JJ), 1, SC, SS)
10 CONTINUE
20 CONTINUE
C
RETURN
C *** Last line of TRIAAK *********************************************
END
** END OF TRIAAKTEXT
*UPTODATE TRIAEKTEXT
SUBROUTINE TRIAEK(A, LDA, E, Q, LDQ, M, N, NRE, NCE, IFIRE,
* IFICE, IFICA)
C
C PURPOSE:
C
C Subroutine TRIAEK reduces a submatrix E(k) of E to upper triangu-
C lar form by row Givens rotations only.
C Here E(k) = E(IFIRE:me,IFICE:ne), where me = IFIRE - 1 + NRE,
C ne = IFICE - 1 + NCE.
C Matrix E(k) is assumed to have full column rank on entry. Hence,
C no pivoting is done during the reduction process. See Algorithm
C 2.3.1 and Remark 2.3.4 in [1].
C The constructed row transformations are also applied to matrix
C A(k) = A(IFIRE:me,IFICA:N).
C Note that in A(k) rows are transformed with the same row indices
C as in E but with column indices different from those in E.
C REMARK: This routine is intended to be called only from the
C SLICOT auxiliary routine TRIRED.
C
C PARAMETERS:
C
C A - DOUBLE PRECISION array of dimension (LDA,N).
C On entry, it contains the submatrix A(k).
C On return, it contains the transformed matrix A(k).
C E - DOUBLE PRECISION array of dimension (LDA,N).
C On entry, it contains the submatrix E(k) of full column
C rank to be reduced to upper triangular form.
C On return, it contains the transformed matrix E(k).
C Q - DOUBLE PRECISION array of dimension (LDQ,M).
C On entry, Q contains the row transformations corresponding
C to the input matrices A and E.
C On return, it contains the product of the input matrix Q and
C the row transformation matrix that has transformed the rows
C of the matrices A and E.
C M - INTEGER.
C Number of rows of A and E. (1 <= M <= LDA).
C N - INTEGER.
C Number of columns of A and E. (N >= 1).
C NRE - INTEGER
C Number of rows in E to be transformed (1 <= NRE <= M).
C NCE - INTEGER.
C Number of columns in E to be transformed (1 <= NCE <= N).
C IFIRE - INTEGER.
C Index of first row in E to be transformed.
C IFICE - INTEGER.
C Index of first column in E to be transformed.
C IFICA - INTEGER.
C Index of first column in A to be transformed.
C
C REFERENCES:
C
C [1] Th.G.J. Beelen, New Algorithms for Computing the Kronecker
C structure of a Pencil with Applications to Systems and
C Control Theory, Ph.D.Thesis, Eindhoven University of
C Technology, The Netherlands, 1987.
C
C CONTRIBUTOR: Th.G.J. Beelen (Philips Glas Eindhoven)
C
C REVISIONS: 1988, January 29.
C
C Specification of the parameters.
C
C .. Scalar arguments ..
C
INTEGER LDA, LDQ, M, N, NRE, NCE, IFIRE, IFICE, IFICA
C
C .. Array arguments ..
C
DOUBLE PRECISION A(LDA,N), E(LDA,N), Q(LDQ,M)
C
C EXTERNAL SUBROUTINES:
C
C DROT from BLAS
C DGIV from SLICOT.
C
C Local variables.
C
DOUBLE PRECISION SC, SS
INTEGER I, II, IIPVT, J, JJ, IFICE1, IFIRE1, NELM
C
IFIRE1 = IFIRE - 1
IFICE1 = IFICE - 1
C
DO 20 J = 1, NCE
JJ = IFICE1 + J
IIPVT = IFIRE1 + J
DO 10 I = J + 1, NRE
II = IFIRE1 + I
C
C Determine the Givens transformation on rows ii and iipvt.
C Apply the transformation to these rows (in whole E-matrix)
C to annihilate E(ii,jj) (from columns jj up to n).
C Apply the transformations also to the A-matrix
C (from columns ifica up to n).
C Update the row transformation matrix Q.
C
CALL DGIV(E(IIPVT,JJ), E(II,JJ), SC, SS)
NELM = N - JJ + 1
CALL DROT(NELM, E(IIPVT,JJ), LDA, E(II,JJ), LDA, SC, SS)
E(II,JJ) = 0.0D0
NELM = N - IFICA + 1
CALL DROT(NELM, A(IIPVT,IFICA), LDA, A(II,IFICA), LDA,
* SC, SS)
CALL DROT(M, Q(IIPVT,1), LDQ, Q(II,1), LDQ, SC, SS)
10 CONTINUE
20 CONTINUE
C
RETURN
C *** Last line of TRIAEK *********************************************
END
** END OF TRIAEKTEXT
*UPTODATE TRIREDTEXT
SUBROUTINE TRIRED(A, LDA, E, Q, LDQ, Z, LDZ, M, N, NBLCKS,
* INUK, IMUK, IERR)
C
C PURPOSE:
C
C On entry, it is assumed that the M by N matrices A and E have
C been transformed to generalized Schur form by unitary trans-
C formations (see Algorithm 3.2.1 in [1]), i.e.,
C
C | s*E(eps,inf)-A(eps,inf) | X |
C s*E - A = |-------------------------|-------------| .
C | 0 | s*E(r)-A(r) |
C
C Here the pencil s*E(eps,inf)-A(eps,inf) is in staircase form.
C This pencil contains all Kronecker column indices and infinite
C elementary divisors of the pencil s*E - A.
C The pencil s*E(r)-A(r) contains all Kronecker row indices and
C finite elementary divisors of s*E - A.
C Subroutine TRIRED performs the triangularization of the sub-
C matrices having full row and column rank in the pencil
C s*E(eps,inf)-A(eps,inf) using Algorithm 3.3.1 in [1].
C REMARK: This routine is intended to be called only from the
C SLICOT routine FSTAIR.
C
C PARAMETERS:
C
C A - DOUBLE PRECISION array of dimension (LDA,N).
C On entry, it contains the matrix A to be reduced.
C On return, it contains the transformed matrix A.
C E - DOUBLE PRECISION array of dimension (LDA,N).
C On entry, it contains the matrix E to be reduced.
C On return, it contains the transformed matrix E.
C Q - DOUBLE PRECISION array of dimension (LDQ,M).
C On entry, Q contains the row transformations corresponding
C to the input matrices A and E.
C On return, it contains the product of the input matrix Q and
C the row transformation matrix that has transformed the rows
C of the matrices A and E.
C Z - DOUBLE PRECISION array of dimension (LDZ,N).
C On entry, Z contains the column transformations corresponding
C to the input matrices A and E.
C On return, it contains the product of the input matrix Z and
C the column transformation matrix that has transformed the
C columns of the matrices A and E.
C M - INTEGER.
C Number of rows in A and E, 1 <= M <= LDA.
C N - INTEGER.
C Number of columns in A and E, N >= 1.
C NBLCKS - INTEGER.
C Number of submatrices having full row rank >=0 in A(eps,inf).
C INUK - INTEGER array of dimension (NBLCKS).
C Array containing the row dimensions nu(k) (k=1,..,NBLCKS)
C of the submatrices having full row rank in the pencil
C s*E(eps,inf)-A(eps,inf).
C IMUK - INTEGER array of dimension (NBLCKS).
C Array containing the column dimensions mu(k) (k=1,..,NBLCKS)
C of the submatrices having full column rank in the pencil.
C IERR - INTEGER.
C IERR = 0, successful completion,
C 1, incorrect dimensions of a full row rank submatrix,
C 2, incorrect dimensions of a full column rank submatrix
C
C REFERENCES:
C
C [1] Th.G.J. Beelen, New Algorithms for Computing the Kronecker
C structure of a Pencil with Applications to Systems and
C Control Theory, Ph.D.Thesis, Eindhoven University of
C Technology, The Netherlands, 1987.
C
C CONTRIBUTOR: Th.G.J. Beelen (Philips Glas Eindhoven)
C
C REVISIONS: 1988, January 29.
C
C Specification of the parameters.
C
C .. Scalar arguments ..
C
INTEGER LDA, LDQ, LDZ, M, N, NBLCKS, IERR
C
C .. Array arguments ..
C
DOUBLE PRECISION A(LDA,N), E(LDA,N), Q(LDQ,M), Z(LDZ,N)
INTEGER INUK(NBLCKS), IMUK(NBLCKS)
C
C EXTERNAL SUBROUTINES:
C
C TRIAAK, TRIAEK from SLICOT.
C
C Local variables.
C
INTEGER ISMUK, ISNUK1, IFIRA, IFICA, IFIRE, IFICE
INTEGER I, K, MUK, MUKP1, NUK
C
C ISMUK = sum(i=1,...,k) MU(i),
C ISNUK1 = sum(i=1,...,k-1) NU(i).
C
ISMUK = 0
ISNUK1 = 0
DO 10 I = 1, NBLCKS
ISMUK = ISMUK + IMUK(I)
ISNUK1 = ISNUK1 + INUK(I)
10 CONTINUE
C
C NOTE: ISNUK1 has not yet the correct value.
C
IERR = 0
MUKP1 = 0
DO 20 K = NBLCKS, 1, -1
MUK = IMUK(K)
NUK = INUK(K)
ISNUK1 = ISNUK1 - NUK
C
C Determine left upper absolute coordinates of E(k) in E-matrix.
C
IFIRE = 1 + ISNUK1
IFICE = 1 + ISMUK
C
C Determine left upper absolute coordinates of A(k) in A-matrix.
C
IFIRA = IFIRE
IFICA = IFICE - MUK
C
C Reduce E(k) to upper triangular form using Givens
C transformations on rows only. Apply the same transformations
C to the rows of A(k).
C
IF (MUKP1 .GT. NUK) THEN
IERR = 1
RETURN
END IF
C
CALL TRIAEK(A, LDA, E, Q, LDQ, M, N, NUK, MUKP1, IFIRE, IFICE,
* IFICA)
C
C Reduce A(k) to upper triangular form using Givens
C transformations on columns only. Apply the same transformations
C to the columns in the E-matrix.
C
IF (NUK .GT. MUK) THEN
IERR = 2
RETURN
END IF
C
CALL TRIAAK(A, LDA, E, Z, LDZ, N, NUK, MUK, IFIRA, IFICA)
C
ISMUK = ISMUK - MUK
MUKP1 = MUK
20 CONTINUE
C
RETURN
C *** Last line of TRIRED *********************************************
END
SUBROUTINE BAE(A, LDA, E, Q, LDQ, Z, LDZ, M, N, ISTAIR, IFIRA,
* IFICA, NCA, RANK, WRK, IWRK, TOL)
C
C LIBRARY INDEX:
C
C
C
C PURPOSE:
C
C Let A and E be M x N matrices with E in column echelon form.
C Let AA and EE be the following submatrices of A and E:
C AA := A(IFIRA : M ; IFICA : N)
C EE := E(IFIRA : M ; IFICA : N).
C Let Aj and Ej be the following submatrices of AA and EE:
C Aj := A(IFIRA : M ; IFICA : IFICA + NCA -1) and
C Ej := E(IFIRA : M ; IFICA + NCA : N).
C
C The subroutine BAE transforms (AA,EE) such that Aj is row
C compressed while keeping matrix Ej in column echelon form
C (which may be different from the form on entry).
C In fact BAE performs the j-th step of Algorithm 3.2.1 in [1].
C Furthermore, BAE determines the rank RANK of the submatrix Ej.
C This is equal to the number of corner points in submatrix Ej.
C REMARK: This routine is intended to be called only from the
C SLICOT routine FSTAIR.
C
C PARAMETERS:
C
C A - DOUBLE PRECISION array of DIMENSION (LDA,N).
C On entry, A(IFIRA : M ; IFICA : IFICA + NCA -1) contains the
C matrix AA.
C On return, it contains the matrix AA that has been row com-
C pressed while keeping EE in column echelon form.
C LDA - INTEGER.
C LDA is the leading dimension of the arrays A and E. LDA >= M.
C E - DOUBLE PRECISION array of DIMENSION (LDA,N).
C On entry, E(IFIRA : M ; IFICA + NCA : N) contains the matrix
C EE which is in column echelon form.
C On return, it contains the transformed matrix EE which is kept
C in column echelon form.
C Q - DOUBLE PRECISION array of DIMENSION (LDQ,M).
C On entry, the array Q contains the row transformations
C corresponding to the input matrices A and E.
C On return, it contains the M x M unitary matrix Q which is the
C product of the input matrix Q and the row transformation
C matrix that has transformed the rows of the matrices A and E.
C LDQ - INTEGER.
C LDQ is the leading dimension of the matrix Q. LDQ >= M.
C Z - DOUBLE PRECISION array of DIMENSION (LDZ,N).
C On entry, the array Z contains the column transformations
C corresponding to the input matrices A and E.
C On return, it contains the N x N unitary matrix Z which is the
C product of the input matrix Z and the column transformation
C matrix that has transformed the columns of A and E.
C LDZ - INTEGER.
C LDZ is the leading dimension of the matrix Z. LDZ >= N.
C M - INTEGER.
C M is the number of rows of the matrices A, E and Q. M >= 1.
C N - INTEGER.
C N is the number of columns of the matrices A, E and Z. N >= 1.
C ISTAIR - INTEGER array of DIMENSION (M).
C On entry, ISTAIR contains information on the column echelon
C form of the input matrix E as follows:
C ISTAIR(i) = + j: the boundary element E(i,j) is a corner point
C - j: the boundary element E(i,j) is not a corner
C point.
C (i=1,...,M)
C On return, ISTAIR contains the same information for the trans-
C formed matrix E.
C IFIRA - INTEGER.
C IFIRA is the first row index of the submatrix Aj and Ej in
C matrix A and E, respectively.
C IFICA - INTEGER.
C IFICA and IFICA + NCA are the first column index of the
C submatrices Aj and Ej in the matrices A and E, respectively.
C NCA - INTEGER.
C NCA is the number of columns of the submatrix Aj in A.
C RANK - INTEGER.
C Numerical rank of the submatrix Ej in E (based on TOL).
C WRK - DOUBLE PRECISION array of DIMENSION (N).
C A real work space array.
C IWRK - INTEGER array of DIMENSION (N).
C An integer work space array.
C TOL - DOUBLE PECISION.
C TOL is the tolerance used when considering matrix elements to
C be zero. TOL should be set to RE * max(||A||,||E||) + AE,
C where ||.|| is the Frobenius norm. AE and RE are the absolute
C and relative accuracy respectively.
C A recommanded choice is AE = EPS and RE = 100*EPS, where EPS
C is the machine precision.
C
C REFERENCES:
C
C [1] Th.G.J. Beelen, New Algorithms for Computing the Kronecker
C structure of a Pencil with Applications to Systems and
C Control Theory, Ph.D.Thesis, Eindhoven University of
C Technology, The Netherlands, 1987.
C
C CONTRIBUTOR: Th.G.J. Beelen (Philips Glass Eindhoven).
C
C REVISIONS: 1988, January 29.
C
C Specification of the parameters.
C
C .. Scalar arguments ..
C
INTEGER LDA, LDQ, LDZ, M, N, IFIRA, IFICA, NCA, RANK
DOUBLE PRECISION TOL
C
C .. Array arguments ..
C
INTEGER ISTAIR(M), IWRK(N)
DOUBLE PRECISION A(LDA,N), E(LDA,N), Q(LDQ,M), Z(LDZ,N), WRK(N)
C
C EXTERNAL SUBROUTINES/FUNCTIONS:
C
C IDAMAX, DROT, DSWAP from BLAS.
C DGIV from SLICOT.
C
C Local variables.
C
INTEGER I, II, IMX, IP, IR, IST1, IST2, ISTPVT, ITYPE,
* IFIRA1, IFICA1, JPVT, JC1, JC2, NROWS,
* K, K1, KK, L, LSAV, LL, MK1, MXRANK, NELM, MJ, NJ
DOUBLE PRECISION BMXNRM, BMX, SC, SS, EIJPVT
LOGICAL LZERO
C
C Initialisation.
C
C NJ = number of columns in submatrix Aj,
C MJ = number of rows in submatrices Aj and Ej.
C
NJ = NCA
MJ = M + 1 - IFIRA
IFIRA1 = IFIRA - 1
IFICA1 = IFICA - 1
DO 10 I = 1, NJ
IWRK(I) = I
10 CONTINUE
K = 1
LZERO = .FALSE.
RANK = MIN0(NJ,MJ)
MXRANK = RANK
C
C WHILE (K <= MXRANK) and (LZERO = FALSE) DO
20 IF ((K .LE. MXRANK) .AND. (.NOT.LZERO)) THEN
C
C Determine column in Aj with largest max-norm.
C
BMXNRM = 0.0D0
LSAV = K
DO 30 L = K, NJ
C
C IMX is relative index in column L of Aj where max el. is
C found.
C NOTE: the first el. in column L is in row K of matrix Aj.
C
KK = IFIRA1 + K
LL = IFICA1 + L
IMX = IDAMAX(MJ - K + 1, A(KK,LL), 1)
BMX = DABS(A(IMX + KK - 1, LL))
IF (BMX .GT. BMXNRM) THEN
BMXNRM = BMX
LSAV = L
END IF
30 CONTINUE
C
IF (BMXNRM .LT. TOL) THEN
C
C Set submatrix of Aj to zero.
C
DO 50 L = K, NJ
LL = IFICA1 + L
DO 40 I = K, MJ
II = IFIRA1 + I
A(II,LL) = 0.0D0
40 CONTINUE
50 CONTINUE
LZERO = .TRUE.
RANK = K - 1
ELSE
C
C Check whether columns have to be interchanged.
C
IF (LSAV .NE. K) THEN
C
C Interchange the columns in A which correspond to the
C columns lsav and k in Aj. Store the permutation in IWRK.
C
CALL DSWAP(M, A(1,IFICA1 + K), 1, A(1,IFICA1 + LSAV), 1)
IP = IWRK(LSAV)
IWRK(LSAV) = IWRK(K)
IWRK(K) = IP
END IF
C
K1 = K + 1
MK1 = NJ - K + 1 + (N - NCA - IFICA1)
KK = IFICA1 + K
C
DO 90 IR = K1, MJ
C
I = MJ - IR + K1
C
C II = absolute row number in A corresponding to row i in
C Aj.
C
II = IFIRA1 + I
C
C Construct Givens transformation to annihilate Aj(i,k).
C Apply the row transformation to whole matrix A.
C (NOT only to Aj).
C Update row transformation matrix Q.
C
CALL DGIV(A(II - 1,KK), A(II,KK), SC, SS)
CALL DROT(MK1, A(II - 1,KK), LDA, A(II,KK), LDA, SC, SS)
A(II,KK) = 0.0D0
CALL DROT(M, Q(II - 1,1), LDQ, Q(II,1), LDQ, SC, SS)
C
C Determine boundary type of matrix E at rows II-1 and II.
C
IST1 = ISTAIR(II - 1)
IST2 = ISTAIR(II)
IF ((IST1 * IST2) .GT. 0) THEN
IF (IST1 .GT. 0) THEN
C
C boundary form = (* x)
C (0 *)
C
ITYPE = 1
ELSE
C
C boundary form = (x x)
C (x x)
C
ITYPE = 3
END IF
ELSE
IF (IST1 .LT. 0) THEN
C
C boundary form = (x x)
C (* x)
C
ITYPE=2
ELSE
C
C boundary form = (* x)
C (0 x)
C
ITYPE = 4
END IF
END IF
C
C Apply row transformation also to matrix E.
C
C JC1 = absolute number of the column in E in which stair
C element of row i-1 of Ej is present.
C JC2 = absolute number of the column in E in which stair
C element of row i of Ej is present.
C
C NOTE: JC1 < JC2 if ITYPE = 1.
C JC1 = JC2 if ITYPE = 2, 3 or 4.
C
JC1 = IABS(IST1)
JC2 = IABS(IST2)
JPVT = MIN0(JC1,JC2)
NELM = N - JPVT + 1
C
CALL DROT(NELM, E(II-1,JPVT), LDA, E(II,JPVT), LDA,
* SC, SS)
EIJPVT = E(II,JPVT)
C
GOTO (80, 60, 90, 70), ITYPE
C
60 IF (DABS(EIJPVT) .LT. TOL) THEN
C (x x) (* x)
C Boundary form has been changed from (* x) to (0 x)
C
ISTPVT = ISTAIR(II)
ISTAIR(II - 1) = ISTPVT
ISTAIR(II) = -(ISTPVT + 1)
E(II, JPVT) = 0.0D0
END IF
GOTO 90
C
70 IF (DABS(EIJPVT) .GE. TOL) THEN
C
C (* x) (x x)
C Boundary form has been changed from (0 x) to (* x)
C
ISTPVT = ISTAIR(II - 1)
ISTAIR(II - 1) = -ISTPVT
ISTAIR(II) = ISTPVT
END IF
GOTO 90
C
C Construct column Givens transformation to annihilate
C E(ii,jpvt).
C Apply column Givens transformation to matrix E.
C (NOT only to Ej).
C
80 CALL DGIV(E(II,JPVT + 1), E(II,JPVT), SC, SS)
CALL DROT(II, E(1,JPVT + 1), 1, E(1,JPVT), 1, SC, SS)
E(II,JPVT) = 0.0D0
C
C Apply this transformation also to matrix A.
C (NOT only to Aj).
C Update column transformation matrix Z.
C
CALL DROT(M, A(1,JPVT + 1), 1, A(1,JPVT), 1, SC, SS)
CALL DROT(N, Z(1,JPVT + 1), 1, Z(1,JPVT), 1, SC, SS)
C
90 CONTINUE
C
K = K + 1
END IF
GOTO 20
END IF
C END WHILE 20
C
C Permute columns of Aj to original order.
C
NROWS = IFIRA1 + RANK
DO 120 I = 1, NROWS
DO 100 K = 1, NJ
KK = IFICA1 + K
WRK(IWRK(K)) = A(I,KK)
100 CONTINUE
DO 110 K = 1, NJ
KK = IFICA1 + K
A(I,KK) = WRK(K)
110 CONTINUE
120 CONTINUE
C
RETURN
C *** Last line of BAE ************************************************
END
** END OF BAETEXT
*UPTODATE DGIVTEXT
SUBROUTINE DGIV(DA, DB, DC, DS)
C
C LIBRARY INDEX:
C
C 2.1.4 Decompositions and transformations.
C
C PURPOSE:
C
C This routine constructs the Givens transformation
C
C ( DC DS )
C G = ( ), DC**2 + DS**2 = 1.0D0 ,
C (-DS DC )
C T T
C such that the vector (DA,DB) is transformed into (R,0), i.e.,
C
C ( DC DS ) ( DA ) ( R )
C ( ) ( ) = ( )
C (-DS DC ) ( DB ) ( 0 ) .
C
C This routine is a modification of the BLAS routine DROTG
C (Algorithm 539) in order to leave the arguments DA and DB
C unchanged. The value or R is not returned.
C
C CONTRIBUTOR: P. Van Dooren (PRLB).
C
C REVISIONS: 1987, November 24.
C
C Specification of parameters.
C
C .. Scalar Arguments ..
C
DOUBLE PRECISION DA, DB, DC, DS
C
C Local variables.
C
DOUBLE PRECISION R, U, V
C
IF (DABS(DA) .GT. DABS(DB)) THEN
U = DA + DA
V = DB/U
R = DSQRT(0.25D0 + V**2) * U
DC = DA/R
DS = V * (DC + DC)
ELSE
IF (DB .NE. 0.0D0) THEN
U = DB + DB
V = DA/U
R = DSQRT(0.25D0 + V**2) * U
DS = DB/R
DC = V * (DS + DS)
ELSE
DC = 1.0D0
DS = 0.0D0
END IF
END IF
RETURN
C *** Last line of DGIV ***********************************************
END
** END OF DGIVTEXT
*UPTODATE DROTITEXT
SUBROUTINE DROTI (N, X, INCX, Y, INCY, C, S)
C
C LIBRARY INDEX:
C
C 2.1.4 Decompositions and transfromations.
C
C PURPOSE:
C
C The subroutine DROTI performs the Givens transformation, defined
C by C (cos) and S (sin), and interchanges the vectors involved,
C i.e.,
C
C |X(i)| | 0 1 | | C S | |X(i)|
C | | := | | x | | x | |, i = 1,...N.
C |Y(i)| | 1 0 | |-S C | |Y(i)|
C
C REMARK. This routine is a modification of DROT from BLAS.
C
C CONTRIBUTOR: Th.G.J. Beelen (Philips Glass Eindhoven)
C
C REVISIONS: 1988, February 02.
C
C Specification of the parameters.
C
C .. Scalar argumants ..
C
INTEGER INCX, INCY, N
DOUBLE PRECISION C, S
C
C .. Array arguments ..
C
DOUBLE PRECISION X(*), Y(*)
C
C Local variables.
C
DOUBLE PRECISION DTEMP
INTEGER I, IX, IY
C
IF (N .LE. 0) RETURN
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
C
C Code for unequal increments or equal increments not equal to 1.
C
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1) * INCX + 1
IF (INCY.LT.0) IY = (-N+1) * INCY + 1
DO 10 I = 1, N
DTEMP = C * Y(IY) - S * X(IX)
Y(IY) = C * X(IX) + S * Y(IY)
X(IX) = DTEMP
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
ELSE
C
C Code for both increments equal to 1.
C
DO 20 I = 1, N
DTEMP = C * Y(I) - S * X(I)
Y(I) = C * X(I) + S * Y(I)
X(I) = DTEMP
20 CONTINUE
END IF
RETURN
C *** Last line if DROTI **********************************************
END
|