File: hhdml.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (242 lines) | stat: -rw-r--r-- 6,682 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
      subroutine hhdml(ktrans,nrowa,ncola,ioff,joff,nrowbl,ncolbl,
     1                 x,nx,qraux,a,na,mode,ierr)
c!purpose
c
c        to pre- or post-multiply a specified block of matrix a by the
c        orthogonal matrix q (or its transpose), where q is the
c        product of householder transformations which are stored as by
c        linpack routine dqrdc in arrays x and qraux.
c
c!method
c
c        the block of a to be transformed is the (nrowbl x ncolbl) one
c        with offset (ioff,joff), ie with first (top left) element
c        (ioff + 1,joff + 1).  this is operated on by the orthogonal
c        (ndimq x ndimq) q = h(1) * ... * h(ktrans) or its transpose,
c        where ndimq equals nrowbl for pre-multiplication and ncolbl
c        for post-multiplication.  each householder transformation
c        h(l) is completely described by the sub-vector stored in the
c        l-th element of qraux and the sub-diagonal part of the l-th
c        column of the (ndimq x ktrans) x.  note finally that ktrans
c        .le. ndimq.
c
c!reference
c
c        dongarra, j.j. et al
c        "linpack users' guide"
c        siam, 1979.  (chapter 9)
c
c!auxiliary routines
c
c        none
c
c! calling sequence
c
c        subroutine hhdml(ktrans,nrowa,ncola,ioff,joff,nrowbl,ncolbl,
c    1                    x,nx,qraux,a,na,mode,ierr)
c
c        integer ktrans,nrowa,ncola,ioff,joff,nrowbl,ncolbl,nx,na
c        integer mode,ierr
c
c        double precision x(nx,ktrans),qraux(ktrans),a(na,ncola)
c
c
c arguments in
c
c       ktrans   integer
c                -the number of householder transformations making up
c                q; declared first dimension of qraux and second
c                dimension of x
c
c       nrowa    integer
c                -the number of rows of matrix a
c
c       ncola    integer
c                -the number of columns of matrix a
c
c       ioff     integer
c                -the row offset of the specified block of a
c
c       joff     integer
c                -the column offset of the specified block of a
c
c       nrowbl   integer
c                -the number of rows of the specified block of a
c
c       ncolbl   integer
c                -the number of columns of the specified block of a
c
c       x        double precision(ndimq,ktrans)
c                -the matrix containing in its sub-diagonal part most
c                of the information necessary to construct q
c
c       nx       integer
c                -the declared first dimension of x.  note that
c                nx .ge. ndimq .ge. ktrans
c
c       qraux    double precision(ktrans)
c                -the remaining information necessary to construct q
c
c       a        double precision(nrowa,ncola)
c                -the matrix of which a specified block is to be
c                transformed.  note that this block is overwritten
c                here
c
c       na       integer
c                -the declared first dimension of a.  note that
c                na .ge. nrowa
c
c       mode     integer
c                -mode is a two-digit non-negative integer: its units
c                digit is 0 if q is to be applied and non-zero if
c                qtrans is, and its tens digit is 0 for post-multipli-
c                cation and non-zero for pre-multiplication
c
c arguments out
c
c       a        double precision(nrowa,ncola)
c                -the given matrix with specified block transformed
c
c       ierr     integer
c                -error indicator
c
c                ierr = 0        successful return
c
c                ierr = 1        nrowa .lt. (ioff + nrowbl)
c
c                ierr = 2        ncola .lt. (joff + ncolbl)
c
c                ierr = 3        ndimq does not lie in the interval
c                                ktrans, nx
c
c working space
c
c                none
c
c!originator
c
c                t.w.c.williams, control systems research group,
c                kingston polytechnic, march 16 1982
c
c!
c
      integer ktrans,nrowa,ncola,ioff,joff,nrowbl,ncolbl,nx,na
      integer mode,ierr
c
      double precision x(nx,ktrans),qraux(ktrans),a(na,ncola)
c
c     local variables:
      integer itrans,ipre,ndimq,iback,lstep,ia,ja,i,j,k,l
c
      double precision diag,temp
c
      double precision tau
c
c
      ierr = 0
c
      if ( (ioff + nrowbl) .le. nrowa) go to 10
c
      ierr = 1
      go to 150
c
 10   if ( (joff + ncolbl) .le. ncola) go to 20
c
      ierr = 2
      go to 150
c
c     itrans units digit of mode: 0 iff non-transposed q to be used
c
 20   itrans = mod(mode,10)
c
c     ipre 10 * (tens digit of mode): 0 iff post-multiplying ablk
c
      ipre = mode - itrans
c
      ndimq = ncolbl
      if (ipre .ne. 0) ndimq = nrowbl
      if ( (ktrans .le. ndimq) .and. (ndimq .le. nx) ) go to 30
c
      ierr = 3
      go to 150
c
c     iback 1 iff precisely one of itrans, ipre .ne. 0, ie iff the
c     householder transformations h(l) are applied in descending order
c
 30   iback = 0
      if (itrans .ne. 0) iback = 1
      if (ipre .ne. 0) iback = iback + 1
c
      if (iback .eq. 1) go to 40
c
c     initialization for h(l) applied in ascending order
c
      l = 1
      lstep = 1
      go to 50
c
c     initialization for h(l) applied in descending order
c
 40   l = ktrans
      lstep = -1
c
 50   if (ipre .eq. 0) go to 100
c
c     pre-multiply appropriate block of a by h(l) in correct order
c
      do 90 k = 1,ktrans
         diag = qraux(l)
         if (diag .eq. 0.0d+0) go to 90
         temp = x(l,l)
         x(l,l) = diag
c
c        operate on a one column at a time
c
         do 80 j = 1,ncolbl
            ja = joff + j
            tau = 0.0d+0
            do 60 i = l,nrowbl
               ia = ioff + i
 60            tau = tau + (x(i,l) * a(ia,ja) )
            tau = tau / diag
            do 70 i = l,nrowbl
               ia = ioff + i
 70            a(ia,ja) = a(ia,ja) - (tau * x(i,l) )
c
 80         continue
c
         x(l,l) = temp
 90      l = l + lstep
      go to 150
c
c     post-multiply appropriate block of a by h(l) in correct order
c
 100  continue
      do 140 k = 1,ktrans
         diag = qraux(l)
         if (diag .eq. 0.0d+0) go to 140
         temp = x(l,l)
         x(l,l) = diag
c
c        operate on a one row at a time
c
         do 130 i = 1,nrowbl
            ia = ioff + i
            tau = 0.0d+0
            do 110 j = l,ncolbl
               ja = joff + j
 110           tau = tau + (a(ia,ja) * x(j,l) )
            tau = tau / diag
            do 120 j = l,ncolbl
               ja = joff + j
 120           a(ia,ja) = a(ia,ja) - (tau * x(j,l) )
c
 130        continue
c
         x(l,l) = temp
 140     l = l + lstep
c
 150  continue
c
      return
      end