File: htridi.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (163 lines) | stat: -rw-r--r-- 5,122 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
      subroutine htridi(nm,n,ar,ai,d,e,e2,tau)
c
      integer i,j,k,l,n,ii,nm,jp1
      double precision ar(nm,n),ai(nm,n),d(n),e(n),e2(n),tau(2,n)
      double precision f,g,h,fi,gi,hh,si,scale
c
c!purpose
c
c     this subroutine reduces a complex hermitian matrix
c     to a real symmetric tridiagonal matrix using
c     unitary similarity transformations.
c
c!calling sequence
c     subroutine htridi(nm,n,ar,ai,d,e,e2,tau)
c
c     integer n,nm
c     double precision ar(nm,n),ai(nm,n),d(n),e(n),e2(n),tau(2,n)
c
c     on input:
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement;
c
c        n is the order of the matrix;
c
c        ar and ai contain the real and imaginary parts,
c          respectively, of the complex hermitian input matrix.
c          only the lower triangle of the matrix need be supplied.
c
c     on output:
c
c        ar and ai contain information about the unitary trans-
c          formations used in the reduction in their full lower
c          triangles.  their strict upper triangles and the
c          diagonal of ar are unaltered;
c
c        d contains the diagonal elements of the the tridiagonal matrix;
c
c        e contains the subdiagonal elements of the tridiagonal
c          matrix in its last n-1 positions.  e(1) is set to zero;
c
c        e2 contains the squares of the corresponding elements of e.
c          e2 may coincide with e if the squares are not needed;
c
c        tau contains further information about the transformations.
c
c     arithmetic is real except for the use of the subroutines
c
c!originator
c
c     this subroutine is a translation of a complex analogue of
c     the algol procedure tred1, num. math. 11, 181-195(1968)
c     by martin, reinsch, and wilkinson.
c     handbook for auto. comp., vol.ii-linear algebra, 212-226(1971).
c     questions and comments should be directed to b. s. garbow,
c     applied mathematics division, argonne national laboratory
c
c!
c     ------------------------------------------------------------------
c
      tau(1,n) = 1.0d+0
      tau(2,n) = 0.0d+0
c
      do 100 i = 1, n
  100 d(i) = ar(i,i)
c     :::::::::: for i=n step -1 until 1 do -- ::::::::::
      do 300 ii = 1, n
         i = n + 1 - ii
         l = i - 1
         h = 0.0d+0
         scale = 0.0d+0
         if (l .lt. 1) go to 130
c     :::::::::: scale row (algol tol then not needed) ::::::::::
         do 120 k = 1, l
  120    scale = scale + abs(ar(i,k)) + abs(ai(i,k))
c
         if (scale .ne. 0.0d+0) go to 140
         tau(1,l) = 1.0d+0
         tau(2,l) = 0.0d+0
  130    e(i) = 0.0d+0
         e2(i) = 0.0d+0
         go to 290
c
  140    do 150 k = 1, l
            ar(i,k) = ar(i,k) / scale
            ai(i,k) = ai(i,k) / scale
            h = h + ar(i,k) * ar(i,k) + ai(i,k) * ai(i,k)
  150    continue
c
         e2(i) = scale * scale * h
         g = sqrt(h)
         e(i) = scale * g
         f = sqrt(ar(i,l)*ar(i,l)+ai(i,l)*ai(i,l))
c     :::::::::: form next diagonal element of matrix t ::::::::::
         if (f .eq. 0.0d+0) go to 160
         tau(1,l) = (ai(i,l) * tau(2,i) - ar(i,l) * tau(1,i)) / f
         si = (ar(i,l) * tau(2,i) + ai(i,l) * tau(1,i)) / f
         h = h + f * g
         g = 1.0d+0 + g / f
         ar(i,l) = g * ar(i,l)
         ai(i,l) = g * ai(i,l)
         if (l .eq. 1) go to 270
         go to 170
  160    tau(1,l) = -tau(1,i)
         si = tau(2,i)
         ar(i,l) = g
  170    f = 0.0d+0
c
         do 240 j = 1, l
            g = 0.0d+0
            gi = 0.0d+0
c     :::::::::: form element of a*u ::::::::::
            do 180 k = 1, j
               g = g + ar(j,k) * ar(i,k) + ai(j,k) * ai(i,k)
               gi = gi - ar(j,k) * ai(i,k) + ai(j,k) * ar(i,k)
  180       continue
c
            jp1 = j + 1
            if (l .lt. jp1) go to 220
c
            do 200 k = jp1, l
               g = g + ar(k,j) * ar(i,k) - ai(k,j) * ai(i,k)
               gi = gi - ar(k,j) * ai(i,k) - ai(k,j) * ar(i,k)
  200       continue
c     :::::::::: form element of p ::::::::::
  220       e(j) = g / h
            tau(2,j) = gi / h
            f = f + e(j) * ar(i,j) - tau(2,j) * ai(i,j)
  240    continue
c
         hh = f / (h + h)
c     :::::::::: form reduced a ::::::::::
         do 260 j = 1, l
            f = ar(i,j)
            g = e(j) - hh * f
            e(j) = g
            fi = -ai(i,j)
            gi = tau(2,j) - hh * fi
            tau(2,j) = -gi
c
            do 260 k = 1, j
               ar(j,k) = ar(j,k) - f * e(k) - g * ar(i,k)
     x                           + fi * tau(2,k) + gi * ai(i,k)
               ai(j,k) = ai(j,k) - f * tau(2,k) - g * ai(i,k)
     x                           - fi * e(k) - gi * ar(i,k)
  260    continue
c
  270    do 280 k = 1, l
            ar(i,k) = scale * ar(i,k)
            ai(i,k) = scale * ai(i,k)
  280    continue
c
         tau(2,l) = -si
  290    hh = d(i)
         d(i) = ar(i,i)
         ar(i,i) = hh
         ai(i,i) = scale * sqrt(h)
  300 continue
c
      return
c     :::::::::: last card of htridi ::::::::::
      end