1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
C/MEMBR ADD NAME=ORTHES,SSI=0
subroutine orthes(nm,n,low,igh,a,ort)
c
integer i,j,m,n,ii,jj,la,mp,nm,igh,kp1,low
double precision a(nm,n),ort(igh)
double precision f,g,h,scale
c! purpose
c
c given a real general matrix, this subroutine
c reduces a submatrix situated in rows and columns
c low through igh to upper hessenberg form by
c orthogonal similarity transformations.
c
c! calling sequence
c
c subroutine orthes(nm,n,low,igh,a,ort)
c
c on input:
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement;
c
c n is the order of the matrix;
c
c low and igh are integers determined by the balancing
c subroutine balanc. if balanc has not been used,
c set low=1, igh=n;
c
c a contains the input matrix.
c
c on output:
c
c a contains the hessenberg matrix. information about
c the orthogonal transformations used in the reduction
c is stored in the remaining triangle under the
c hessenberg matrix;
c
c ort contains further information about the transformations.
c only elements low through igh are used.
c
c!originator
c
c this subroutine is a translation of the algol procedure orthes,
c num. math. 12, 349-368(1968) by martin and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 339-358(1971).
c questions and comments should be directed to b. s. garbow,
c applied mathematics division, argonne national laboratory
c
c!
c ------------------------------------------------------------------
c
la = igh - 1
kp1 = low + 1
if (la .lt. kp1) go to 200
c
do 180 m = kp1, la
h = 0.0d+0
ort(m) = 0.0d+0
scale = 0.0d+0
c :::::::::: scale column (algol tol then not needed) ::::::::::
do 90 i = m, igh
90 scale = scale + abs(a(i,m-1))
c
if (scale .eq. 0.0d+0) go to 180
mp = m + igh
c :::::::::: for i=igh step -1 until m do -- ::::::::::
do 100 ii = m, igh
i = mp - ii
ort(i) = a(i,m-1) / scale
h = h + ort(i) * ort(i)
100 continue
c
g = -sign(sqrt(h),ort(m))
h = h - ort(m) * g
ort(m) = ort(m) - g
c :::::::::: form (i-(u*ut)/h) * a ::::::::::
do 130 j = m, n
f = 0.0d+0
c :::::::::: for i=igh step -1 until m do -- ::::::::::
do 110 ii = m, igh
i = mp - ii
f = f + ort(i) * a(i,j)
110 continue
c
f = f / h
c
do 120 i = m, igh
120 a(i,j) = a(i,j) - f * ort(i)
c
130 continue
c :::::::::: form (i-(u*ut)/h)*a*(i-(u*ut)/h) ::::::::::
do 160 i = 1, igh
f = 0.0d+0
c :::::::::: for j=igh step -1 until m do -- ::::::::::
do 140 jj = m, igh
j = mp - jj
f = f + ort(j) * a(i,j)
140 continue
c
f = f / h
c
do 150 j = m, igh
150 a(i,j) = a(i,j) - f * ort(j)
c
160 continue
c
ort(m) = scale * ort(m)
a(m,m-1) = scale * g
180 continue
c
200 return
c :::::::::: last card of orthes ::::::::::
end
|