File: orthes.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (114 lines) | stat: -rw-r--r-- 3,299 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
C/MEMBR ADD NAME=ORTHES,SSI=0
      subroutine orthes(nm,n,low,igh,a,ort)
c
      integer i,j,m,n,ii,jj,la,mp,nm,igh,kp1,low
      double precision a(nm,n),ort(igh)
      double precision f,g,h,scale
c! purpose
c
c     given a real general matrix, this subroutine
c     reduces a submatrix situated in rows and columns
c     low through igh to upper hessenberg form by
c     orthogonal similarity transformations.
c
c! calling sequence
c
c      subroutine orthes(nm,n,low,igh,a,ort)
c
c     on input:
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement;
c
c        n is the order of the matrix;
c
c        low and igh are integers determined by the balancing
c          subroutine  balanc.  if  balanc  has not been used,
c          set low=1, igh=n;
c
c        a contains the input matrix.
c
c     on output:
c
c        a contains the hessenberg matrix.  information about
c          the orthogonal transformations used in the reduction
c          is stored in the remaining triangle under the
c          hessenberg matrix;
c
c        ort contains further information about the transformations.
c          only elements low through igh are used.
c
c!originator
c
c     this subroutine is a translation of the algol procedure orthes,
c     num. math. 12, 349-368(1968) by martin and wilkinson.
c     handbook for auto. comp., vol.ii-linear algebra, 339-358(1971).
c     questions and comments should be directed to b. s. garbow,
c     applied mathematics division, argonne national laboratory
c
c!
c     ------------------------------------------------------------------
c
      la = igh - 1
      kp1 = low + 1
      if (la .lt. kp1) go to 200
c
      do 180 m = kp1, la
         h = 0.0d+0
         ort(m) = 0.0d+0
         scale = 0.0d+0
c     :::::::::: scale column (algol tol then not needed) ::::::::::
         do 90 i = m, igh
   90    scale = scale + abs(a(i,m-1))
c
         if (scale .eq. 0.0d+0) go to 180
         mp = m + igh
c     :::::::::: for i=igh step -1 until m do -- ::::::::::
         do 100 ii = m, igh
            i = mp - ii
            ort(i) = a(i,m-1) / scale
            h = h + ort(i) * ort(i)
  100    continue
c
         g = -sign(sqrt(h),ort(m))
         h = h - ort(m) * g
         ort(m) = ort(m) - g
c     :::::::::: form (i-(u*ut)/h) * a ::::::::::
         do 130 j = m, n
            f = 0.0d+0
c     :::::::::: for i=igh step -1 until m do -- ::::::::::
            do 110 ii = m, igh
               i = mp - ii
               f = f + ort(i) * a(i,j)
  110       continue
c
            f = f / h
c
            do 120 i = m, igh
  120       a(i,j) = a(i,j) - f * ort(i)
c
  130    continue
c     :::::::::: form (i-(u*ut)/h)*a*(i-(u*ut)/h) ::::::::::
         do 160 i = 1, igh
            f = 0.0d+0
c     :::::::::: for j=igh step -1 until m do -- ::::::::::
            do 140 jj = m, igh
               j = mp - jj
               f = f + ort(j) * a(i,j)
  140       continue
c
            f = f / h
c
            do 150 j = m, igh
  150       a(i,j) = a(i,j) - f * ort(j)
c
  160    continue
c
         ort(m) = scale * ort(m)
         a(m,m-1) = scale * g
  180 continue
c
  200 return
c     :::::::::: last card of orthes ::::::::::
      end