1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
subroutine polmc(nm,ng,n,m,a,b,g,wr,wi,z,inc,invr,ierr,jpvt,
x rm1,rm2,rv1,rv2,rv3,rv4)
c
double precision a(nm,n),b(nm,m),g(ng,n),wr(n),wi(n),z(nm,n),
x rm1(m,m),rm2(m,*),rv1(n),rv2(n),rv3(m),rv4(m)
double precision p,q,r,s,t,zz
integer invr(n),jpvt(m)
logical complx
c!purpose
c this subroutine determines the state feedback matrix g of the
c linear time-invariant multi-input system
c
c dx / dt = a * x + b * u,
c
c where a is a nxn and b is a nxm matrix, such that the
c closed-loop system
c
c dx / dt = (a - b * g) * x
c
c has desired poles. the system must be preliminary reduced into
c orthogonal canonical form using the subroutine trmcf.
c!calling sequence
c
c subroutine polmc(nm,ng,n,m,a,b,g,wr,wi,z,inc,invr,ierr,jpvt,
c x rm1,rm2,rv1,rv2,rv3,rv4)
c
c on input-
c
c nm is an integer variable set equal to the row dimension
c of the two-dimensional arrays a, b and z as
c specified in the dimension statements for a, b and z
c in the calling program,
c
c ng is an integer variable set equal to the row dimension
c of the two-dimensional array g as specified in the
c dimension statement for g in the calling program,
c
c n is an integer variable set equal to the order of the
c matrices a and z. n must be not greater than nm,
c
c m is an integer variable set equal to the number of the
c columns of the matrix b. m must be not greater than
c ng,
c
c a is a working precision real two-dimensional variable with
c row dimension nm and column dimension at least n
c containing the block-hessenberg canonical form of the
c matrix a. the elements below the subdiagonal blocks
c must be equal to zero,
c
c b is a working precision real two-dimensional variable with
c row dimension nm and column dimension at least m
c containing the canonical form of the matrix b. the
c elements below the invr(1)-th row must be equal to zero,
c
c wr,wi are working precision real one-dimensional variables
c of dimension at least n containing the real and
c imaginery parts, respectively, of the desired poles,
c the poles can be unordered except that the complex
c conjugate pairs of poles must appfar consecutively.
c note that on output the imaginery parts of the poles
c may be modified,
c
c z is a working precision real two-dimensonal variale with
c row dimension nm and column dimension at least n
c containing the orthogonal transformation matrix produced
c in trmcf which reduces the system into canonical form,
c
c inc is an integer variable set equal to the controllability
c index of the system,
c
c invr is an integer one-dimensional variable of dimension at
c least inc containing the dimensons of the
c controllable subsystems in the canonical form.
c
c on output-
c
c a contains the upper quast-triangular form of the closed-
c loop system matrix a - b * g, that is triangular except
c of possible 2x2 blocks on the diagonal,
c
c b contains the transformed matrix b,
c
c g is a working precision real two-dimensional variable with
c row dimension ng and column dimension at least n
c containing the state feedback matrix g of the original
c system,
c
c z contains the orthogonal matrix which reduces the closed-
c loop system matrix a - b * g to the upper quasi-
c triangular form,
c
c ierr is an integer variable set equal to
c zero for normal return,
c 1 if the system is not completely controllable,
c
c jpvt is an integer temporary one-dimensonal array of
c dimension at least m used in the solution of linear
c equations,
c
c rm1 is a working precision real temporary two-dimensonal
c array of dimension at least mxm used in the solution
c of linear equations,
c
c rm2 is a working precision real temporary two-dimensional
c array od dimension at least mxmax(2,m) used in the
c solution of linear equations,
c
c rv1, are working precision real temporary one-dimensional
c rv2 arrays of dimension at least n used to hold the
c real and imaginery parts, respectively, of the
c eigenvectors during the reduction,
c
c rv3, are working precision real temporary one-dimensional
c rv4 arrays of dimension at least m used in the solution
c of linear equations.
c
c!auxiliary routines
c
c sqrsm
c fortran abs,min,sqrt
c!originator
c p.hr.petkov, higher institute of mechanical and electrical
c engineering, sofia, bulgaria.
c modified by serge Steer INRIA
c Copyright SLICOT
c!
c
ierr = 0
m1 = invr(1)
l = 0
10 l = l + 1
mr = invr(inc)
if (inc .eq. 1) go to 350
lp1 = l + m1
inc1 = inc - 1
mr1 = invr(inc1)
nr = n - mr + 1
nr1 = nr - mr1
complx = wi(l) .ne. 0.0d+0
do 15 i = nr, n
rv1(i) = 0.0d+0
if (complx) rv2(i) = 0.0d+0
15 continue
c
rv1(nr) = 1.0d+0
if (.not. complx) go to 20
if (mr .eq. 1) rv2(nr) = 1.0d+0
if (mr .gt. 1) rv2(nr+1) = 1.0d+0
t = wi(l)
wi(l) = 1.0d+0
wi(l+1) = t * wi(l+1)
c
c compute and transform eigenvector
c
20 do 200 ip = 1, inc
if (ip .eq. inc .and. inc .eq. 2) go to 200
if (ip .eq. inc) go to 120
c
do 40 ii = 1, mr
i = nr + ii - 1
c
do 30 jj = 1, mr1
j = nr1 + jj - 1
rm1(ii,jj) = a(i,j)
30 continue
c
40 continue
c
if (ip .eq. 1) go to 70
c
c scaling
c
s = 0.0d+0
mp1 = mr + 1
np1 = nr + mp1
c
do 50 ii = 1, mp1
i = nr + ii - 1
s = s + abs(rv1(i))
if (complx) s = s + abs(rv2(i))
50 continue
c
do 60 ii = 1, mp1
i = nr + ii - 1
rv1(i) = rv1(i) / s
if (complx) rv2(i) = rv2(i) / s
60 continue
c
if (complx .and. np1 .le. n) rv2(np1) = rv2(np1) / s
70 if (ip .eq. 1) mp1 = 1
np1 = nr + mp1
c
do 100 ii = 1, mr
i = nr + ii - 1
s = wr(l) * rv1(i)
c
do 80 jj = 1, mp1
j = nr + jj - 1
s = s - a(i,j) * rv1(j)
80 continue
c
rm2(ii,1) = s
if (.not. complx) go to 100
rm2(ii,1) = rm2(ii,1) + wi(l+1) * rv2(i)
s = wr(l+1) * rv2(i) + wi(l) * rv1(i)
c
do 90 jj = 1, mp1
c la ligne suivante a ete rajoutee par mes soins
j = nr + jj - 1
s = s - a(i,j) * rv2(j)
90 continue
c
if (np1 .le. n) s = s - a(i,np1) * rv2(np1)
rm2(ii,2) = s
100 continue
c
c solving linear equations for the eigenvector elements
c
nc = 1
if (complx) nc = 2
call dqrsm(rm1,m,mr,mr1,rm2,m,nc,rm2,m,ir,jpvt,
x rv3,rv4)
if (ir .lt. mr) go to 600
c
do 110 ii = 1, mr1
i = nr1 + ii - 1
rv1(i) = rm2(ii,1)
if (complx) rv2(i) = rm2(ii,2)
110 continue
c
if (ip .eq. 1 .and. inc .gt. 2) go to 195
120 nj = nr
if (ip .lt. inc) nj = nr1
ni = nr + mr - 1
inc2 = inc - ip + 2
if (ip .gt. 1) ni = ni + invr(inc2)
if (ip .gt. 2) ni = ni + 1
if (complx .and. ip .gt. 2) ni = min(ni+1,n)
kmr = mr1
if (ip .gt. 1) kmr = mr
c
do 190 kk = 1, kmr
ll = 1
k = nr + mr - kk
if (ip .eq. 1) k = nr - kk
130 p = rv1(k)
if (ll .eq. 2) p = rv2(k)
q = rv1(k+1)
if (ll .eq. 2) q = rv2(k+1)
s = abs(p) + abs(q)
p = p / s
q = q / s
r = sqrt(p*p+q*q)
t = s * r
rv1(k) = t
if (ll .eq. 2) rv2(k) = t
rv1(k+1) = 0.0d+0
if (ll .eq. 2) rv2(k+1) = 0.0d+0
p = p / r
q = q / r
c
c transform a
c
do 140 j = nj, n
zz = a(k,j)
a(k,j) = p * zz + q * a(k+1,j)
a(k+1,j) = p * a(k+1,j) - q * zz
140 continue
c
do 150 i = 1, ni
zz = a(i,k)
a(i,k) = p * zz + q * a(i,k+1)
a(i,k+1) = p * a(i,k+1) - q * zz
150 continue
c
if (k .eq. lp1 .and. ll .eq. 1 .or. k .gt. lp1) go to 170
c
c transform b
c
do 160 j = 1, m
zz = b(k,j)
b(k,j) = p * zz + q * b(k+1,j)
b(k+1,j) = p * b(k+1,j) - q * zz
160 continue
c
c accumulate transformations
c
170 do 180 i = 1, n
zz = z(i,k)
z(i,k) = p * zz + q * z(i,k+1)
z(i,k+1) = p * z(i,k+1) - q * zz
180 continue
c
if (.not. complx .or. ll .eq. 2) go to 190
zz = rv2(k)
rv2(k) = p * zz + q * rv2(k+1)
rv2(k+1) = p * rv2(k+1) - q * zz
if (k + 2 .gt. n) go to 190
k = k + 1
ll = 2
go to 130
190 continue
c
if (ip .eq. inc) go to 200
195 mr = mr1
nr = nr1
if (ip .eq. inc1) go to 200
inc2 = inc - ip - 1
mr1 = invr(inc2)
nr1 = nr1 - mr1
200 continue
c
if (complx) go to 250
c
c find one column of g
c
do 220 ii = 1, m1
i = l + ii
c
do 210 j = 1, m
210 rm1(ii,j) = b(i,j)
c
rm2(ii,1) = a(i,l)
220 continue
c
call dqrsm(rm1,m,m1,m,rm2,m,1,g(1,l),ng,ir,jpvt,rv3,rv4)
if (ir .lt. m1) go to 600
c
do 240 i = 1, lp1
c
do 230 j = 1, m
230 a(i,l) = a(i,l) - b(i,j) * g(j,l)
c
240 continue
c
go to 330
c
c find two columns of g
c
250 l = l + 1
if (lp1 .lt. n) lp1 = lp1 + 1
c
do 270 ii = 1, m1
i = l + ii
if (l + m1 .gt. n) i = i - 1
c
c la ligne suivante a ete rajoutee par mes soins
do 260 j = 1 , m
cxxx if(abs(b(i,j)).le.abs(b(l,j))) i=i-1
260 rm1(ii,j) = b(i,j)
c
p = a(i,l-1)
if (i .eq. l) p = p - (rv2(i) / rv1(i-1)) * wi(i)
rm2(ii,1) = p
q = a(i,l)
if (i .eq. l) q = q - wr(i) + (rv2(i-1) / rv1(i-1)) *wi(i)
rm2(ii,2) = q
270 continue
c
call dqrsm(rm1,m,m1,m,rm2,m,2,rm2,m,ir,jpvt,rv3,rv4)
if (ir .lt. m1) go to 600
c
do 290 i = 1, m
c
do 280 jj = 1, 2
j = l + jj - 2
g(i,j) = rm2(i,jj)
280 continue
c
290 continue
c
do 320 i = 1, lp1
c
do 310 jj = 1, 2
j = l + jj - 2
c
do 300 k = 1, m
300 a(i,j) = a(i,j) - b(i,k)*g(k,j)
c
310 continue
c
320 continue
c
if (l .eq. n) go to 500
330 invr(inc) = invr(inc) - 1
if (invr(inc) .eq. 0) inc = inc - 1
if (complx) invr(inc) = invr(inc) - 1
if (invr(inc) .eq. 0) inc = inc - 1
go to 10
c
c find the rest columns of g
c
350 do 370 ii = 1, mr
i = l + ii - 1
c
do 360 j = 1, m
360 rm1(ii,j) = b(i,j)
c
370 continue
c
do 400 ii = 1, mr
i = l + ii - 1
c
do 380 jj = 1, mr
j = l + jj - 1
if (ii .lt. jj) rm2(ii,jj) = 0.0d+0
if (ii .gt. jj) rm2(ii,jj) = a(i,j)
380 continue
c
400 continue
c
ii = 0
410 ii = ii + 1
i = l + ii - 1
if (wi(i) .ne. 0.0d+0) go to 420
rm2(ii,ii) = a(i,i) - wr(i)
if (ii .eq. mr) go to 430
c la ligne suivante a ete rajoutee par mes soins
goto 410
420 rm2(ii,ii) = a(i,i) - wr(i)
rm2(ii,ii+1) = a(i,i+1) - wi(i)
rm2(ii+1,ii) = a(i+1,i) - wi(i+1)
rm2(ii+1,ii+1) = a(i+1,i+1) - wr(i+1)
ii = ii + 1
if (ii .lt. mr) go to 410
430 call dqrsm(rm1,m,mr,m,rm2,m,m,rm2,m,ir,jpvt,rv3,rv4)
if (ir .lt. mr) go to 600
c
do 450 i = 1, m
c
do 440 jj = 1, mr
j = l + jj - 1
g(i,j) = rm2(i,jj)
440 continue
c
450 continue
c
do 480 i = 1, n
c
do 470 j = l, n
c
do 460 k = 1, m
460 a(i,j) = a(i,j) - b(i,k) * g(k,j)
c
470 continue
c
480 continue
c
c transform g
c
500 do 540 i = 1, m
c
do 520 j = 1, n
s = 0.0d+0
c
do 510 k = 1, n
510 s = s + g(i,k) * z(j,k)
c
rv1(j) = s
520 continue
c
do 530 j = 1, n
530 g(i,j) = rv1(j)
c
540 continue
c
go to 610
c
c set error -- the system is not completely controllable
c
600 ierr = 1
610 return
c
c last card of subroutine polmc
c
end
|