File: realit.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (92 lines) | stat: -rw-r--r-- 2,420 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
      subroutine realit(sss, nz, iflag)
c variable-shift h polynomial iteration for a real
c zero.
c sss   - starting iterate
c nz    - number of zero found
c iflag - flag to indicate a pair of zero near real
c         axis.
      common /gloglo/ p, qp, k, qk, svk, sr, si, u,
     * v, a, b, c, d, a1, a2, a3, a6, a7, e, f, g,
     * h, szr, szi, lzr, lzi, eta, are, mre, n, nn
      double precision p(101), qp(101), k(101),
     * qk(101), svk(101), sr, si, u, v, a, b, c, d,
     * a1, a2, a3, a6, a7, e, f, g, h, szr, szi,
     * lzr, lzi
      real eta, are, mre
      integer n, nn
      double precision pv, kv, t, s, sss
      real ms, mp, omp, ee
      integer nz, iflag, i, j, nm1
      nm1 = n - 1
      nz = 0
      s = sss
      iflag = 0
      j = 0
c main loop
   10 pv = p(1)
c evaluate p at s
      qp(1) = pv
      do 20 i=2,nn
        pv = pv*s + p(i)
        qp(i) = pv
   20 continue
      mp = abs(pv)
c compute a rigorous bound on the error in evaluating
c p
      ms = abs(s)
      ee = (mre/(are+mre))*abs(real(qp(1)))
      do 30 i=2,nn
        ee = ee*ms + abs(real(qp(i)))
   30 continue
c iteration has converges sufficiently if the
c polynomial value is less yhan 20 times this bound
      if (mp.gt.20.*((are+mre)*ee-mre*mp)) go to 40
      nz = 1
      szr = s
      szi = 0.0d+0
      return
   40 j = j +1
c stop iteration after 10 steps
      if (j.gt.10) return
      if (j.lt.2) go to 50
      if (abs(t).gt..001*abs(s-t) .or. mp.le.omp)
     * go to 50
c a cluster of zeros near the real axis has been
c encountered return with iflag set to initiate a
c quadratic iteration
      iflag = 1
      sss = s
      return
c return if the polynomial value has increased
c significantly
   50 omp = mp
c compute t, the next polynomial, and the new iterate
      kv = k(1)
      qk(1) = kv
      do 60 i=2,n
        kv = kv*s + k(i)
        qk(i) = kv
   60 continue
      if (abs(kv).le.abs(k(n))*10.*eta) go to 80
c use the scaled form of the recurrence if the value
c of k at s is nonzero
      t = -pv/kv
      k(1) = qp(1)
      do 70 i=2,n
        k(i) = t*qk(i-1) + qp(i)
   70 continue
      go to 100
c use unscaled form
   80 k(1) = 0.0d+0
      do 90 i=2,n
        k(i) = qk(i-1)
   90 continue
  100 kv = k(1)
      do 110 i=2,n
        kv = kv*s +k(i)
  110 continue
      t = 0.0d+0
      if (abs(kv).gt.abs(k(n))*10.*eta) t = -pv/kv
      s = s + t
      go to 10
      end