1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
subroutine scaleg (n,ma,a,mb,b,low,igh,cscale,cperm,wk)
c
c *****parameters:
integer igh,low,ma,mb,n
double precision a(ma,n),b(mb,n),cperm(n),cscale(n),wk(n,6)
c
c *****local variables:
integer i,ir,it,j,jc,kount,nr,nrp2
double precision alpha,basl,beta,cmax,coef,coef2,coef5,cor,
* ew,ewc,fi,fj,gamma,pgamma,sum,t,ta,tb,tc
c
c *****fortran functions:
double precision dabs, dlog10, dsign
c float
c
c *****subroutines called:
c none
c
c ---------------------------------------------------------------
c
c *****purpose:
c scales the matrices a and b in the generalized eigenvalue
c problem a*x = (lambda)*b*x such that the magnitudes of the
c elements of the submatrices of a and b (as specified by low
c and igh) are close to unity in the least squares sense.
c ref.: ward, r. c., balancing the generalized eigenvalue
c problem, siam j. sci. stat. comput., vol. 2, no. 2, june 1981,
c 141-152.
c
c *****parameter description:
c
c on input:
c
c ma,mb integer
c row dimensions of the arrays containing matrices
c a and b respectively, as declared in the main calling
c program dimension statement;
c
c n integer
c order of the matrices a and b;
c
c a real(ma,n)
c contains the a matrix of the generalized eigenproblem
c defined above;
c
c b real(mb,n)
c contains the b matrix of the generalized eigenproblem
c defined above;
c
c low integer
c specifies the beginning -1 for the rows and
c columns of a and b to be scaled;
c
c igh integer
c specifies the ending -1 for the rows and columns
c of a and b to be scaled;
c
c cperm real(n)
c work array. only locations low through igh are
c referenced and altered by this subroutine;
c
c wk real(n,6)
c work array that must contain at least 6*n locations.
c only locations low through igh, n+low through n+igh,
c ..., 5*n+low through 5*n+igh are referenced and
c altered by this subroutine.
c
c on output:
c
c a,b contain the scaled a and b matrices;
c
c cscale real(n)
c contains in its low through igh locations the integer
c exponents of 2 used for the column scaling factors.
c the other locations are not referenced;
c
c wk contains in its low through igh locations the integer
c exponents of 2 used for the row scaling factors.
c
c *****algorithm notes:
c none.
c
c *****history:
c written by r. c. ward.......
c modified 8/86 by bobby bodenheimer so that if
c sum = 0 (corresponding to the case where the matrix
c doesn't need to be scaled) the routine returns.
c
c ---------------------------------------------------------------
c
if (low .eq. igh) go to 410
do 210 i = low,igh
wk(i,1) = 0.0d0
wk(i,2) = 0.0d0
wk(i,3) = 0.0d0
wk(i,4) = 0.0d0
wk(i,5) = 0.0d0
wk(i,6) = 0.0d0
cscale(i) = 0.0d0
cperm(i) = 0.0d0
210 continue
c
c compute right side vector in resulting linear equations
c
basl = dlog10(2.0d0)
do 240 i = low,igh
do 240 j = low,igh
tb = b(i,j)
ta = a(i,j)
if (ta .eq. 0.0d0) go to 220
ta = dlog10(dabs(ta)) / basl
220 continue
if (tb .eq. 0.0d0) go to 230
tb = dlog10(dabs(tb)) / basl
230 continue
wk(i,5) = wk(i,5) - ta - tb
wk(j,6) = wk(j,6) - ta - tb
240 continue
nr = igh-low+1
coef = 1.0d0/float(2*nr)
coef2 = coef*coef
coef5 = 0.5d0*coef2
nrp2 = nr+2
beta = 0.0d0
it = 1
c
c start generalized conjugate gradient iteration
c
250 continue
ew = 0.0d0
ewc = 0.0d0
gamma = 0.0d0
do 260 i = low,igh
gamma = gamma + wk(i,5)*wk(i,5) + wk(i,6)*wk(i,6)
ew = ew + wk(i,5)
ewc = ewc + wk(i,6)
260 continue
gamma = coef*gamma - coef2*(ew**2 + ewc**2)
+ - coef5*(ew - ewc)**2
if (it .ne. 1) beta = gamma / pgamma
t = coef5*(ewc - 3.0d0*ew)
tc = coef5*(ew - 3.0d0*ewc)
do 270 i = low,igh
wk(i,2) = beta*wk(i,2) + coef*wk(i,5) + t
cperm(i) = beta*cperm(i) + coef*wk(i,6) + tc
270 continue
c
c apply matrix to vector
c
do 300 i = low,igh
kount = 0
sum = 0.0d0
do 290 j = low,igh
if (a(i,j) .eq. 0.0d0) go to 280
kount = kount+1
sum = sum + cperm(j)
280 continue
if (b(i,j) .eq. 0.0d0) go to 290
kount = kount+1
sum = sum + cperm(j)
290 continue
wk(i,3) = float(kount)*wk(i,2) + sum
300 continue
do 330 j = low,igh
kount = 0
sum = 0.0d0
do 320 i = low,igh
if (a(i,j) .eq. 0.0d0) go to 310
kount = kount+1
sum = sum + wk(i,2)
310 continue
if (b(i,j) .eq. 0.0d0) go to 320
kount = kount+1
sum = sum + wk(i,2)
320 continue
wk(j,4) = float(kount)*cperm(j) + sum
330 continue
sum = 0.0d0
do 340 i = low,igh
sum = sum + wk(i,2)*wk(i,3) + cperm(i)*wk(i,4)
340 continue
if(sum.eq.0.0d0) return
alpha = gamma / sum
c
c determine correction to current iterate
c
cmax = 0.0d0
do 350 i = low,igh
cor = alpha * wk(i,2)
if (dabs(cor) .gt. cmax) cmax = dabs(cor)
wk(i,1) = wk(i,1) + cor
cor = alpha * cperm(i)
if (dabs(cor) .gt. cmax) cmax = dabs(cor)
cscale(i) = cscale(i) + cor
350 continue
if (cmax .lt. 0.5d0) go to 370
do 360 i = low,igh
wk(i,5) = wk(i,5) - alpha*wk(i,3)
wk(i,6) = wk(i,6) - alpha*wk(i,4)
360 continue
pgamma = gamma
it = it+1
if (it .le. nrp2) go to 250
c
c end generalized conjugate gradient iteration
c
370 continue
do 380 i = low,igh
ir = wk(i,1) + dsign(0.5d0,wk(i,1))
wk(i,1) = ir
jc = cscale(i) + dsign(0.5d0,cscale(i))
cscale(i) = jc
380 continue
c
c scale a and b
c
do 400 i = 1,igh
ir = wk(i,1)
fi = 2.0d0**ir
if (i .lt. low) fi = 1.0d0
do 400 j =low,n
jc = cscale(j)
fj = 2.0d0**jc
if (j .le. igh) go to 390
if (i .lt. low) go to 400
fj = 1.0d0
390 continue
a(i,j) = a(i,j)*fi*fj
b(i,j) = b(i,j)*fi*fj
400 continue
410 continue
return
c
c last line of scaleg
c
end
|