1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
subroutine sszer(n,m,p,a,na,b,c,nc,d,eps,zeror,zeroi,nu,irank,af,
& naf,bf,mplusn,wrka,wrk1,nwrk1,wrk2,nwrk2,ierr)
C
C! calling sequence
C
C subroutine sszer(n,m,p,a,na,b,c,nc,d,zeror,zeroi,nu,irank,
C 1 af,naf,bf,mplusn,wrka,wrk1,nwrk1,wrk2,nwrk2,ierr)
C
C integer n,m,p,na,nc,nu,irank,nabf,mplusn,nwrk1,nwrk2,ierr
C
C double precision a(na,n),b(na,m),c(nc,n),d(nc,m),wrka(na,n)
C double precision af(naf,mplusn),bf(naf,mplusn)
C double precision wrk1(nwrk1),wrk2(nwrk2)
C double precision zeror(n),zeroi(n)
C
C arguments in
C
C n integer
C -the number of state variables in the system
C
C m integer
C -the number of inputs to the system
C
C p integer
C -the number of outputs from the system
C
C a double precision (n,n)
C -the state dynamics matrix of the system
C
C na integer
C -the declared first dimension of matrices a and b
C
C b double precision (n,m)
C -the input/state matrix of the system
C
C c double precision (p,n)
C -the state/output matrix of the system
C
C nc integer
C -the declared first dimension of matrices c and d
C
C d double precision (p,m)
C -the input/output matrix of the system
C
C naf integer
C -the declared first dimension of matrices af and bf
C naf must be at least n + p
C
C mplusn integer
C -the second dimension of af and bf. mplusn must be
C at least m + n .
C
C nwrk1 integer
C -the length of work vector wrk1.
C nwrk1 must be at least max(m,p)
C
C nwrk2 integer
C -the length of work vector wrk2.
C nwrk2 must be at least max(n,m,p)+1
C
C arguments out
C
C nu integer
C -the number of (finite) invariant zeros
C
C irank integer
C -the normal rank of the transfer function
C
C zeror double precision (n)
C zeroi double precision (n)
C -the real and imaginary parts of the zeros
C
C af double precision ( n+p , m+n )
C bf double precision ( n+p , m+n )
C -the coefficient matrices of the reduced pencil
C
C ierr integer
C -error indicator
C
C ierr = 0 successful return
C
C ierr = 1 incorrect dimensions of matrices
C
C ierr = 2 attempt to divide by zero
C
C ierr = i > 2 ierr value i-2 from qitz (eispack)
C
C!working space
C
C wrka double precision (na,n)
C
C wrk1 double precision (nwrk1)
C
C wrk2 double precision (nwrk2)
C
C!purpose
C
C to compute the invariant zeros of a linear multivariable
C system given in state space form.
C
C!method
C
C this routine extracts from the system matrix of a state-space
C system a,b,c,d a regular pencil lambda * bf - af
C which has the invariant zeros of the system as generalized
C eigenvalues.
C
C!reference
C
C emami-naeini, a. and van dooren, p.
C 'computation of zeros of linear multivariable systems'
C report na-80-03, computer science department, stanford univ.
C
C!originator
C
C a.emami-naeini, computer science department,
C stanford university.
C Copyrigth SLICE
C
integer n,m,p,na,nc,nu,irank,naf,mplusn,nwrk1,nwrk2,ierr
C
double precision a(na,n),b(na,m),c(nc,n),d(nc,m)
double precision wrka(na,n),zeror(n),zeroi(n)
double precision af(naf,mplusn),bf(naf,mplusn),wrk1(nwrk1),
& wrk2(nwrk2)
double precision eps,sum,heps,xxx(1,1)
C
C local variables:
C
logical zero,matq,matz
C
integer mm,nn,pp,mu,iro,isigma,numu,mnu,numu1,mnu1,i,j,j1
integer mj,ni,nu1
C
double precision s
ierr = 1
if (na .lt. n) return
if (nc .lt. p) return
if (naf .lt. n+p) return
if (nwrk1 .lt. m) return
if (nwrk1 .lt. p) return
if (nwrk2 .lt. n) return
if (nwrk2 .lt. m) return
if (nwrk2 .lt. p) return
if (mplusn .lt. m+n) return
ierr = 0
C construct the compound matrix (b a) of dimension
C (d c)
C (n + p) * (m + n)
C
sum = 0.0d+0
do 30 i = 1,n
do 10 j = 1,m
bf(i,j) = b(i,j)
sum = sum + (b(i,j)*b(i,j))
10 continue
do 30 j = 1,n
mj = m + j
bf(i,mj) = a(i,j)
sum = sum + (a(i,j)*a(i,j))
30 continue
C
do 60 i = 1,p
ni = n + i
do 40 j = 1,m
bf(ni,j) = d(i,j)
sum = sum + (d(i,j)*d(i,j))
40 continue
do 60 j = 1,n
mj = m + j
bf(ni,mj) = c(i,j)
sum = sum + (c(i,j)*c(i,j))
60 continue
C
heps = eps * sqrt(sum)
C
C reduce this system to one with the same invariant zeros and with
C d full row rank mu (the normal rank of the original system)
C
iro = p
isigma = 0
C
call preduc(bf,naf,mplusn,m,n,p,heps,iro,isigma,mu,nu,wrk1,nwrk1,
& wrk2,nwrk2)
C
irank = mu
if (nu .eq. 0) return
C
C pertranspose the system
C
numu = nu + mu
mnu = m + nu
numu1 = numu + 1
mnu1 = mnu + 1
do 70 i = 1,numu
ni = numu1 - i
do 70 j = 1,mnu
mj = mnu1 - j
af(mj,ni) = bf(i,j)
70 continue
C
mm = m
nn = n
pp = p
if (mu .eq. mm) goto 80
pp = mm
nn = nu
mm = mu
C
C reduce the system to one with the same invariant zeros and with
C d square and of full rank
C
iro = pp - mm
isigma = mm
C
call preduc(af,naf,mplusn,mm,nn,pp,heps,iro,isigma,mu,nu,wrk1,
& nwrk1,wrk2,nwrk2)
C
if (nu .eq. 0) return
mnu = mm + nu
80 continue
do 100 i = 1,nu
ni = mm + i
do 90 j = 1,mnu
bf(i,j) = 0.0d+0
90 continue
bf(i,ni) = 1.0d+0
100 continue
C
if (irank .eq. 0) return
nu1 = nu + 1
numu = nu + mu
j1 = mm
do 120 i = 1,mm
j1 = j1 - 1
do 110 j = 1,nu1
mj = j1 + j
wrk2(j) = af(numu,mj)
110 continue
C
call house(wrk2,nu1,nu1,heps,zero,s)
call tr2(af,naf,mplusn,wrk2,s,1,numu,j1,nu1)
call tr2(bf,naf,mplusn,wrk2,s,1,nu,j1,nu1)
C
numu = numu - 1
120 continue
matz = .false.
matq = .false.
Cc
call qhesz(naf,nu,af,bf,matq,xxx,matz,wrka)
call qitz(naf,nu,af,bf,eps,matq,xxx,matz,wrka,ierr)
if (ierr .ne. 0) goto 150
Cc
call qvalz(naf,nu,af,bf,eps,zeror,zeroi,wrk2,matq,xxx,matz,wrka)
Cc
C do 130 i = 1,nu
C if (wrk2(i) .eq. 0.0d+0) go to 140
C zeror(i) = zeror(i)/wrk2(i)
C zeroi(i) = zeroi(i)/wrk2(i)
C 130 continue
Cc
Cc successful completion
Cc
ierr = 0
return
Cc
Cc attempt to divide by zero
Cc
C 140 ierr = 2
C return
Cc
Cc failure in subroutine qzit
Cc
150 ierr = ierr + 2
return
end
subroutine preduc(abf,naf,mplusn,m,n,p,heps,iro,isigma,mu,nu,
1 wrk1,nwrk1,wrk2,nwrk2)
c%calling sequence
c subroutine preduc(abf,naf,mplusn,m,n,p,heps,iro,isigma,mu,nu,
c 1 wrk1,nwrk1,wrk2,nwrk2)
c integer naf,mplusn,m,n,p,iro,isigma,mu,nu,nwrk1,nwrk2
c double precision abf(naf,mplusn),wrk1(nwrk1),wrk2(nwrk2)
c
c%purpose
c
c this routine is only to be called from slice routine sszer
c%
integer naf,mplusn,m,n,p,iro,isigma,mu,nu,nwrk1,nwrk2
c
double precision abf(naf,mplusn),wrk1(nwrk1),wrk2(nwrk2)
c
c local variables:
c
integer i,j,i1,m1,n1,i2,mm1,mn1,irj,itau,iro1,icol
integer ibar,numu,irow
c
logical zero
c
double precision s,temp
c
double precision sum,heps
c
c
mu = p
nu = n
10 if (mu .eq. 0) return
iro1 = iro
mnu = m + nu
numu = nu + mu
if (m .eq. 0) go to 120
iro1 = iro1 + 1
irow = nu
if (isigma .le. 1) go to 40
c
c compress rows of d: first exploit triangular shape
c
m1 = isigma - 1
do 30 icol = 1,m1
do 20 j = 1,iro1
irj = irow + j
wrk2(j) = abf(irj,icol)
20 continue
c
call house(wrk2,iro1,1,heps,zero,s)
c
call tr1(abf,naf,mplusn,wrk2,s,irow,iro1,icol,mnu)
c
irow = irow + 1
30 continue
c
c continue with householder transformation with pivoting
c
40 if (isigma .ne. 0) go to 45
isigma = 1
iro1 = iro1 - 1
45 if (isigma .eq. m) go to 60
do 55 icol = isigma,m
sum = 0.0d+0
do 50 j = 1,iro1
irj = irow + j
sum = sum + (abf(irj,icol) * abf(irj,icol) )
50 continue
wrk1(icol) = sum
55 continue
c
60 continue
do 100 icol = isigma,m
c
c pivot if necessary
c
if (icol .eq. m) go to 80
c
call pivot(wrk1,temp,ibar,icol,m)
c
if (ibar .eq. icol) go to 80
wrk1(ibar) = wrk1(icol)
wrk1(icol) = temp
do 70 i = 1,numu
temp = abf(i,icol)
abf(i,icol) = abf(i,ibar)
70 abf(i,ibar) = temp
c
c perform householder transformation
c
80 continue
do 90 i = 1,iro1
irj = irow + i
90 wrk2(i) = abf(irj,icol)
c
call house(wrk2,iro1,1,heps,zero,s)
c
if (zero) go to 120
if (iro1 .eq. 1) return
c
call tr1(abf,naf,mplusn,wrk2,s,irow,iro1,icol,mnu)
c
irow = irow + 1
iro1 = iro1 - 1
do 100 j = icol,m
100 wrk1(j) = wrk1(j) - (abf(irow,j) * abf(irow,j) )
c
120 itau = iro1
isigma = mu - itau
c
c compress the columns of c
c
i1 = nu + isigma
mm1 = m + 1
n1 = nu
if (itau .eq. 1) go to 140
do 135 i = 1,itau
irj = i1 + i
sum = 0.0d+0
do 130 j = mm1,mnu
130 sum = sum + (abf(irj,j) * abf(irj,j) )
135 wrk1(i) = sum
c
140 continue
do 200 iro1 = 1,itau
iro = iro1 - 1
i = itau - iro
i2 = i + i1
c
c pivot if necessary
c
if (i .eq. 1) go to 160
c
call pivot(wrk1,temp,ibar,1,i)
c
if (ibar .eq. i) go to 160
wrk1(ibar) = wrk1(i)
wrk1(i) = temp
irj = ibar + i1
do 150 j = mm1,mnu
temp = abf(i2,j)
abf(i2,j) = abf(irj,j)
150 abf(irj,j) = temp
c
c perform householder transformation
c
160 do 170 j = 1,n1
irj = m + j
170 wrk2(j) = abf(i2,irj)
c
call house(wrk2,n1,n1,heps,zero,s)
c
if (zero) go to 210
if (n1 .eq. 1) go to 220
c
call tr2(abf,naf,mplusn,wrk2,s,1,i2,m,n1)
c
mn1 = m + n1
c
call tr1(abf,naf,mplusn,wrk2,s,0,n1,1,mn1)
c
do 190 j = 1,i
irj = i1 + j
190 wrk1(j) = wrk1(j) - (abf(irj,mn1) * abf(irj,mn1) )
mnu = mnu - 1
200 n1 = n1 - 1
c
iro = itau
210 nu = nu - iro
mu = isigma + iro
if (iro .eq. 0) return
go to 10
c
220 mu = isigma
nu = 0
c
return
end
subroutine house(wrk2,k,j,heps,zero,s)
c
c warning - this routine is only to be called from slice routine
c sszer
c
c% purpose
c this routine constructs a householder transformation h = i-s.uu
c that 'mirrors' a vector wrk2(1,...,k) to the j-th unit vector.
c if norm(wrk2) < heps, zero is put equal to .true.
c upon return, u is stored in wrk2
c
c%
integer k,j
c
double precision wrk2(k),heps,s
c
logical zero
c
c local variables:
c
integer i
c
double precision alfa,dum1
c
double precision sum
c
c
zero = .true.
sum = 0.0d+0
do 10 i = 1,k
10 sum = sum + (wrk2(i) * wrk2(i) )
c
alfa = sqrt(sum)
if (alfa .le. heps) return
c
zero = .false.
dum1 = wrk2(j)
if (dum1 .gt. 0.0d+0) alfa = -alfa
wrk2(j) = dum1 - alfa
s = 1.0d+0 / (sum - (alfa * dum1) )
c
return
end
subroutine tr1(a,na,n,u,s,i1,i2,j1,j2)
c% calling sequence
c
c subroutine tr1(a,na,n,u,s,i1,i2,j1,j2)
c
c%purpose
c
c this subroutine performs the householder transformation
c h = i - s.uu
c on the rows i1 + 1 to i1 + i2 of a, this from columns j1 to j2.
c% comments
c
c warning - this routine is only to be called from slice routine
c sszer
c
c%
integer na,n,i1,i2,j1,j2
c
double precision a(na,n),u(i2),s
c
c local variables:
c
integer i,j,irj
c
double precision y
c
double precision sum
c
c
do 20 j = j1,j2
sum = 0.0d+0
do 10 i = 1,i2
irj = i1 + i
10 sum = sum + (u(i) * a(irj,j) )
c
y = sum * s
c
do 20 i = 1,i2
irj = i1 + i
20 a(irj,j) = a(irj,j) - (u(i) * y)
c
return
end
subroutine tr2(a,na,n,u,s,i1,i2,j1,j2)
c% calling sequence
c
c subroutine tr2(a,na,n,u,s,i1,i2,j1,j2)
c%purpose
c
c this routine performs the householder transformation h = i-s.uu
c on the columns j1 + 1 to j1 + j2 of a, this from rows i1 to i2.
c
c% comments
c
c warning - this routine is only to be called from slice routine
c sszer
c%
integer na,n,i1,i2,j1,j2
c
double precision a(na,n),u(j2),s
c
c local variables:
c
integer i,j,irj
c
double precision y
c
double precision sum
c
c
do 20 i = i1,i2
sum = 0.0d+0
do 10 j = 1,j2
irj = j1 + j
10 sum = sum + (u(j) * a(i,irj) )
c
y = sum * s
c
do 20 j = 1,j2
irj = j1 + j
20 a(i,irj) = a(i,irj) - (u(j) * y)
c
return
end
subroutine pivot(vec,vmax,ibar,i1,i2)
c% calling sequence
c subroutine pivot(vec,vmax,ibar,i1,i2)
c integer ibar,i1,i2
c double precision vec(i2),vmax
c
c% purpose
c
c this subroutine computes the maximal norm element (vthe max)
c of the vector vec(i1,...,i2), and its location ibar
c
c this routine is only to be called from slice routine sszer
c
c%
integer ibar,i1,i2
c
double precision vec(i2),vmax
c
c local variables:
c
integer i,i11
c
c
ibar = i1
vmax = vec(i1)
if (i1 .ge. i2) go to 20
i11 = i1 + 1
do 10 i = i11,i2
if (abs(vec(i) ) .lt. vmax) go to 10
vmax = abs (vec(i) )
ibar = i
10 continue
c
20 if (vec(ibar) .lt. 0.0d+0) vmax = -vmax
c
return
end
|