File: tql2.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (181 lines) | stat: -rw-r--r-- 5,341 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
      subroutine tql2(nm,n,d,e,z,job,ierr)
c
      integer i,j,k,l,m,n,ii,l1,l2,nm,mml,job,ierr
      double precision d(n),e(n),z(nm,n)
      double precision c,c2,c3,dl1,el1,f,g,h,p,r,s,s2,tst1,tst2,pythag
c
c     this subroutine is a translation of the algol procedure tql2,
c     num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and
c     wilkinson.
c     handbook for auto. comp., vol.ii-linear algebra, 227-240(1971).
c
c     this subroutine finds the eigenvalues and eigenvectors
c     of a symmetric tridiagonal matrix by the ql method.
c     the eigenvectors of a full symmetric matrix can also
c     be found if  tred2  has been used to reduce this
c     full matrix to tridiagonal form.
c
c!calling sequence
c
c      subroutine tql2(nm,n,d,e,z,job,ierr)
c
c     on input
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement.
c
c        n is the order of the matrix.
c
c        d contains the diagonal elements of the input matrix.
c
c        e contains the subdiagonal elements of the input matrix
c          in its last n-1 positions.  e(1) is arbitrary.
c
c        z contains (for job=1) the transformation matrix produced 
c          in the reduction by  tred2, if performed.  if the eigenvectors
c          of the tridiagonal matrix are desired, z must contain
c          the identity matrix. If job=0 z is not referenced
c
c      on output
c
c        d contains the eigenvalues in ascending order.  if an
c          error exit is made, the eigenvalues are correct but
c          unordered for indices 1,2,...,ierr-1.
c
c        e has been destroyed.
c
c        z contains orthonormal eigenvectors of the symmetric
c          tridiagonal (or full) matrix (for job=1).  if an error 
c          exit is made,z contains the eigenvectors associated with the stored
c          eigenvalues. If job=0 z is not referenced
c
c        ierr is set to
c          zero       for normal return,
c          j          if the j-th eigenvalue has not been
c                     determined after 30*n iterations.
c
c     calls pythag for  dsqrt(a*a + b*b) .
c
c     questions and comments should be directed to burton s. garbow,
c     mathematics and computer science div, argonne national laboratory
c
c     this version dated august 1983.
c
c     ------------------------------------------------------------------
c
      ierr = 0
      if (n .eq. 1) go to 1001
c
      do 100 i = 2, n
  100 e(i-1) = e(i)
c
      f = 0.0d0
      tst1 = 0.0d0
      e(n) = 0.0d0
c
      do 240 l = 1, n
         j = 0
         h = abs(d(l)) + abs(e(l))
         if (tst1 .lt. h) tst1 = h
c     .......... look for small sub-diagonal element ..........
         do 110 m = l, n
            tst2 = tst1 + abs(e(m))
            if (tst2 .eq. tst1) go to 120
c     .......... e(n) is always zero, so there is no exit
c                through the bottom of the loop ..........
  110    continue
c
  120    if (m .eq. l) go to 220
  130    if (j .eq. 30*n) go to 1000
         j = j + 1
c     .......... form shift ..........
         l1 = l + 1
         l2 = l1 + 1
         g = d(l)
         p = (d(l1) - g) / (2.0d0 * e(l))
         r = pythag(p,1.0d0)
         d(l) = e(l) / (p + sign(r,p))
         d(l1) = e(l) * (p + sign(r,p))
         dl1 = d(l1)
         h = g - d(l)
         if (l2 .gt. n) go to 145
c
         do 140 i = l2, n
  140    d(i) = d(i) - h
c
  145    f = f + h
c     .......... ql transformation ..........
         p = d(m)
         c = 1.0d0
         c2 = c
         el1 = e(l1)
         s = 0.0d0
         mml = m - l
c     .......... for i=m-1 step -1 until l do -- ..........
         do 200 ii = 1, mml
            c3 = c2
            c2 = c
            s2 = s
            i = m - ii
            g = c * e(i)
            h = c * p
            r = pythag(p,e(i))
            e(i+1) = s * r
            s = e(i) / r
            c = p / r
            p = c * d(i) - s * g
            d(i+1) = h + s * (c * g + s * d(i))
cSS96        test on job added to inhibit z computation 
            if(job.eq.1) then
c     .......... form vector ..........
               do 180 k = 1, n
                  h = z(k,i+1)
                  z(k,i+1) = s * z(k,i) + c * h
                  z(k,i) = c * z(k,i) - s * h
 180           continue
            endif
c
  200    continue
c
         p = -s * s2 * c3 * el1 * e(l) / dl1
         e(l) = s * p
         d(l) = c * p
         tst2 = tst1 + abs(e(l))
         if (tst2 .gt. tst1) go to 130
  220    d(l) = d(l) + f
  240 continue
c     .......... order eigenvalues and eigenvectors ..........
      do 300 ii = 2, n
         i = ii - 1
         k = i
         p = d(i)
c
         do 260 j = ii, n
            if (d(j) .ge. p) go to 260
            k = j
            p = d(j)
  260    continue
c
         if (k .eq. i) go to 300
         d(k) = d(i)
         d(i) = p
c
cSS96    test on job added to inhibit z computation 
         if(job.eq.1) then
            do 280 j = 1, n
               p = z(j,i)
               z(j,i) = z(j,k)
               z(j,k) = p
 280        continue
         endif
c
  300 continue
c
      go to 1001
c     .......... set error -- no convergence to an
c                eigenvalue after 30*n iterations ..........
 1000 ierr = l
 1001 return
      end