1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
subroutine tred2(nm,n,a,d,e,z)
c
integer i,j,k,l,n,ii,nm,jp1
double precision a(nm,n),d(n),e(n),z(nm,n)
double precision f,g,h,hh,scale
c
c this subroutine is a translation of the algol procedure tred2,
c num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 212-226(1971).
c
c this subroutine reduces a real symmetric matrix to a
c symmetric tridiagonal matrix using and accumulating
c orthogonal similarity transformations.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix.
c
c a contains the real symmetric input matrix. only the
c lower triangle of the matrix need be supplied.
c
c on output
c
c d contains the diagonal elements of the tridiagonal matrix.
c
c e contains the subdiagonal elements of the tridiagonal
c matrix in its last n-1 positions. e(1) is set to zero.
c
c z contains the orthogonal transformation matrix
c produced in the reduction.
c
c a and z may coincide. if distinct, a is unaltered.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
do 100 i = 1, n
c
do 80 j = i, n
80 z(j,i) = a(j,i)
c
d(i) = a(n,i)
100 continue
c
if (n .eq. 1) go to 510
c .......... for i=n step -1 until 2 do -- ..........
do 300 ii = 2, n
i = n + 2 - ii
l = i - 1
h = 0.0d0
scale = 0.0d0
if (l .lt. 2) go to 130
c .......... scale row (algol tol then not needed) ..........
do 120 k = 1, l
120 scale = scale + abs(d(k))
c
if (scale .ne. 0.0d0) go to 140
130 e(i) = d(l)
c
do 135 j = 1, l
d(j) = z(l,j)
z(i,j) = 0.0d0
z(j,i) = 0.0d0
135 continue
c
go to 290
c
140 do 150 k = 1, l
d(k) = d(k) / scale
h = h + d(k) * d(k)
150 continue
c
f = d(l)
g = -sign(sqrt(h),f)
e(i) = scale * g
h = h - f * g
d(l) = f - g
c .......... form a*u ..........
do 170 j = 1, l
170 e(j) = 0.0d0
c
do 240 j = 1, l
f = d(j)
z(j,i) = f
g = e(j) + z(j,j) * f
jp1 = j + 1
if (l .lt. jp1) go to 220
c
do 200 k = jp1, l
g = g + z(k,j) * d(k)
e(k) = e(k) + z(k,j) * f
200 continue
c
220 e(j) = g
240 continue
c .......... form p ..........
f = 0.0d0
c
do 245 j = 1, l
e(j) = e(j) / h
f = f + e(j) * d(j)
245 continue
c
hh = f / (h + h)
c .......... form q ..........
do 250 j = 1, l
250 e(j) = e(j) - hh * d(j)
c .......... form reduced a ..........
do 280 j = 1, l
f = d(j)
g = e(j)
c
do 260 k = j, l
260 z(k,j) = z(k,j) - f * e(k) - g * d(k)
c
d(j) = z(l,j)
z(i,j) = 0.0d0
280 continue
c
290 d(i) = h
300 continue
c .......... accumulation of transformation matrices ..........
do 500 i = 2, n
l = i - 1
z(n,l) = z(l,l)
z(l,l) = 1.0d0
h = d(i)
if (h .eq. 0.0d0) go to 380
c
do 330 k = 1, l
330 d(k) = z(k,i) / h
c
do 360 j = 1, l
g = 0.0d0
c
do 340 k = 1, l
340 g = g + z(k,i) * z(k,j)
c
do 360 k = 1, l
z(k,j) = z(k,j) - g * d(k)
360 continue
c
380 do 400 k = 1, l
400 z(k,i) = 0.0d0
c
500 continue
c
510 do 520 i = 1, n
d(i) = z(n,i)
z(n,i) = 0.0d0
520 continue
c
z(n,n) = 1.0d0
e(1) = 0.0d0
return
end
|