File: tred2.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (165 lines) | stat: -rw-r--r-- 4,121 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      subroutine tred2(nm,n,a,d,e,z)
c
      integer i,j,k,l,n,ii,nm,jp1
      double precision a(nm,n),d(n),e(n),z(nm,n)
      double precision f,g,h,hh,scale
c
c     this subroutine is a translation of the algol procedure tred2,
c     num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson.
c     handbook for auto. comp., vol.ii-linear algebra, 212-226(1971).
c
c     this subroutine reduces a real symmetric matrix to a
c     symmetric tridiagonal matrix using and accumulating
c     orthogonal similarity transformations.
c
c     on input
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement.
c
c        n is the order of the matrix.
c
c        a contains the real symmetric input matrix.  only the
c          lower triangle of the matrix need be supplied.
c
c     on output
c
c        d contains the diagonal elements of the tridiagonal matrix.
c
c        e contains the subdiagonal elements of the tridiagonal
c          matrix in its last n-1 positions.  e(1) is set to zero.
c
c        z contains the orthogonal transformation matrix
c          produced in the reduction.
c
c        a and z may coincide.  if distinct, a is unaltered.
c
c     questions and comments should be directed to burton s. garbow,
c     mathematics and computer science div, argonne national laboratory
c
c     this version dated august 1983.
c
c     ------------------------------------------------------------------
c
      do 100 i = 1, n
c
         do 80 j = i, n
   80    z(j,i) = a(j,i)
c
         d(i) = a(n,i)
  100 continue
c
      if (n .eq. 1) go to 510
c     .......... for i=n step -1 until 2 do -- ..........
      do 300 ii = 2, n
         i = n + 2 - ii
         l = i - 1
         h = 0.0d0
         scale = 0.0d0
         if (l .lt. 2) go to 130
c     .......... scale row (algol tol then not needed) ..........
         do 120 k = 1, l
  120    scale = scale + abs(d(k))
c
         if (scale .ne. 0.0d0) go to 140
  130    e(i) = d(l)
c
         do 135 j = 1, l
            d(j) = z(l,j)
            z(i,j) = 0.0d0
            z(j,i) = 0.0d0
  135    continue
c
         go to 290
c
  140    do 150 k = 1, l
            d(k) = d(k) / scale
            h = h + d(k) * d(k)
  150    continue
c
         f = d(l)
         g = -sign(sqrt(h),f)
         e(i) = scale * g
         h = h - f * g
         d(l) = f - g
c     .......... form a*u ..........
         do 170 j = 1, l
  170    e(j) = 0.0d0
c
         do 240 j = 1, l
            f = d(j)
            z(j,i) = f
            g = e(j) + z(j,j) * f
            jp1 = j + 1
            if (l .lt. jp1) go to 220
c
            do 200 k = jp1, l
               g = g + z(k,j) * d(k)
               e(k) = e(k) + z(k,j) * f
  200       continue
c
  220       e(j) = g
  240    continue
c     .......... form p ..........
         f = 0.0d0
c
         do 245 j = 1, l
            e(j) = e(j) / h
            f = f + e(j) * d(j)
  245    continue
c
         hh = f / (h + h)
c     .......... form q ..........
         do 250 j = 1, l
  250    e(j) = e(j) - hh * d(j)
c     .......... form reduced a ..........
         do 280 j = 1, l
            f = d(j)
            g = e(j)
c
            do 260 k = j, l
  260       z(k,j) = z(k,j) - f * e(k) - g * d(k)
c
            d(j) = z(l,j)
            z(i,j) = 0.0d0
  280    continue
c
  290    d(i) = h
  300 continue
c     .......... accumulation of transformation matrices ..........
      do 500 i = 2, n
         l = i - 1
         z(n,l) = z(l,l)
         z(l,l) = 1.0d0
         h = d(i)
         if (h .eq. 0.0d0) go to 380
c
         do 330 k = 1, l
  330    d(k) = z(k,i) / h
c
         do 360 j = 1, l
            g = 0.0d0
c
            do 340 k = 1, l
  340       g = g + z(k,i) * z(k,j)
c
            do 360 k = 1, l
               z(k,j) = z(k,j) - g * d(k)
  360    continue
c
  380    do 400 k = 1, l
  400    z(k,i) = 0.0d0
c
  500 continue
c
  510 do 520 i = 1, n
         d(i) = z(n,i)
         z(n,i) = 0.0d0
  520 continue
c
      z(n,n) = 1.0d0
      e(1) = 0.0d0
      return
      end