1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
subroutine wgeco(ar,ai,lda,n,ipvt,rcond,zr,zi)
c Copyright INRIA
integer lda,n,ipvt(*)
double precision ar(lda,*),ai(lda,*),zr(*),zi(*)
double precision rcond
c!purpose
c
c wgeco factors a double-complex matrix by gaussian elimination
c and estimates the condition of the matrix.
c
c if rcond is not needed, wgefa is slightly faster.
c to solve a*x = b , follow wgeco by wgesl.
c to compute inverse(a)*c , follow wgeco by wgesl.
c to compute determinant(a) , follow wgeco by wgedi.
c to compute inverse(a) , follow wgeco by wgedi.
c
c!calling sequence
c
c subroutine wgeco(ar,ai,lda,n,ipvt,rcond,zr,zi)
c on entry
c
c a double-complex(lda, n)
c the matrix to be factored.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c on return
c
c a an upper triangular matrix and the multipliers
c which were used to obtain it.
c the factorization can be written a = l*u where
c l is a product of permutation and unit lower
c triangular matrices and u is upper triangular.
c
c ipvt integer(n)
c an integer vector of pivot indices.
c
c rcond double precision
c an estimate of the reciprocal condition of a .
c for the system a*x = b , relative perturbations
c in a and b of size epsilon may cause
c relative perturbations in x of size epsilon/rcond .
c if rcond is so small that the logical expression
c 1.0 + rcond .eq. 1.0
c is true, then a may be singular to working
c precision. in particular, rcond is zero if
c exact singularity is detected or the estimate
c underflows.
c
c z double-complex(n)
c a work vector whose contents are usually unimportant.
c if a is close to a singular matrix, then z is
c an approximate null vector in the sense that
c norm(a*z) = rcond*norm(a)*norm(z) .
c
c!originator
c linpack. this version dated 07/01/79 .
c cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c linpack wgefa
c blas waxpy,wdotc,wasum
c fortran abs,max
c
c!
c internal variables
c
double precision wdotcr,wdotci,ekr,eki,tr,ti,wkr,wki,wkmr,wkmi
double precision anorm,s,wasum,sm,ynorm
integer info,j,k,kb,kp1,l
c
double precision zdumr,zdumi
double precision cabs1
cabs1(zdumr,zdumi) = abs(zdumr) + abs(zdumi)
c
c compute 1-norm of a
c
anorm = 0.0d+0
do 10 j = 1, n
anorm = max(anorm,wasum(n,ar(1,j),ai(1,j),1))
10 continue
c
c factor
c
call wgefa(ar,ai,lda,n,ipvt,info)
c
c rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
c estimate = norm(z)/norm(y) where a*z = y and ctrans(a)*y = e .
c ctrans(a) is the conjugate transpose of a .
c the components of e are chosen to cause maximum local
c growth in the elements of w where ctrans(u)*w = e .
c the vectors are frequently rescaled to avoid overflow.
c
c solve ctrans(u)*w = e
c
ekr = 1.0d+0
eki = 0.0d+0
do 20 j = 1, n
zr(j) = 0.0d+0
zi(j) = 0.0d+0
20 continue
do 110 k = 1, n
call wsign(ekr,eki,-zr(k),-zi(k),ekr,eki)
if (cabs1(ekr-zr(k),eki-zi(k))
* .le. cabs1(ar(k,k),ai(k,k))) go to 40
s = cabs1(ar(k,k),ai(k,k))
* /cabs1(ekr-zr(k),eki-zi(k))
call wrscal(n,s,zr,zi,1)
ekr = s*ekr
eki = s*eki
40 continue
wkr = ekr - zr(k)
wki = eki - zi(k)
wkmr = -ekr - zr(k)
wkmi = -eki - zi(k)
s = cabs1(wkr,wki)
sm = cabs1(wkmr,wkmi)
if (cabs1(ar(k,k),ai(k,k)) .eq. 0.0d+0) go to 50
call wdiv(wkr,wki,ar(k,k),-ai(k,k),wkr,wki)
call wdiv(wkmr,wkmi,ar(k,k),-ai(k,k),wkmr,wkmi)
go to 60
50 continue
wkr = 1.0d+0
wki = 0.0d+0
wkmr = 1.0d+0
wkmi = 0.0d+0
60 continue
kp1 = k + 1
if (kp1 .gt. n) go to 100
do 70 j = kp1, n
call wmul(wkmr,wkmi,ar(k,j),-ai(k,j),tr,ti)
sm = sm + cabs1(zr(j)+tr,zi(j)+ti)
call waxpy(1,wkr,wki,ar(k,j),-ai(k,j),1,
$ zr(j),zi(j),1)
s = s + cabs1(zr(j),zi(j))
70 continue
if (s .ge. sm) go to 90
tr = wkmr - wkr
ti = wkmi - wki
wkr = wkmr
wki = wkmi
do 80 j = kp1, n
call waxpy(1,tr,ti,ar(k,j),-ai(k,j),1,
$ zr(j),zi(j),1)
80 continue
90 continue
100 continue
zr(k) = wkr
zi(k) = wki
110 continue
s = 1.0d+0/wasum(n,zr,zi,1)
call wrscal(n,s,zr,zi,1)
c
c solve ctrans(l)*y = w
c
do 140 kb = 1, n
k = n + 1 - kb
if (k .ge. n) go to 120
zr(k) = zr(k)
* + wdotcr(n-k,ar(k+1,k),ai(k+1,k),1,zr(k+1),zi(k+1),1)
zi(k) = zi(k)
* + wdotci(n-k,ar(k+1,k),ai(k+1,k),1,zr(k+1),zi(k+1),1)
120 continue
if (cabs1(zr(k),zi(k)) .le. 1.0d+0) go to 130
s = 1.0d+0/cabs1(zr(k),zi(k))
call wrscal(n,s,zr,zi,1)
130 continue
l = ipvt(k)
tr = zr(l)
ti = zi(l)
zr(l) = zr(k)
zi(l) = zi(k)
zr(k) = tr
zi(k) = ti
140 continue
s = 1.0d+0/wasum(n,zr,zi,1)
call wrscal(n,s,zr,zi,1)
c
ynorm = 1.0d+0
c
c solve l*v = y
c
do 160 k = 1, n
l = ipvt(k)
tr = zr(l)
ti = zi(l)
zr(l) = zr(k)
zi(l) = zi(k)
zr(k) = tr
zi(k) = ti
if (k .lt. n)
* call waxpy(n-k,tr,ti,ar(k+1,k),ai(k+1,k),1,zr(k+1),zi(k+1),
* 1)
if (cabs1(zr(k),zi(k)) .le. 1.0d+0) go to 150
s = 1.0d+0/cabs1(zr(k),zi(k))
call wrscal(n,s,zr,zi,1)
ynorm = s*ynorm
150 continue
160 continue
s = 1.0d+0/wasum(n,zr,zi,1)
call wrscal(n,s,zr,zi,1)
ynorm = s*ynorm
c
c solve u*z = v
c
do 200 kb = 1, n
k = n + 1 - kb
if (cabs1(zr(k),zi(k))
* .le. cabs1(ar(k,k),ai(k,k))) go to 170
s = cabs1(ar(k,k),ai(k,k))
* /cabs1(zr(k),zi(k))
call wrscal(n,s,zr,zi,1)
ynorm = s*ynorm
170 continue
if (cabs1(ar(k,k),ai(k,k)) .eq. 0.0d+0) go to 180
call wdiv(zr(k),zi(k),ar(k,k),ai(k,k),zr(k),zi(k))
180 continue
if (cabs1(ar(k,k),ai(k,k)) .ne. 0.0d+0) go to 190
zr(k) = 1.0d+0
zi(k) = 0.0d+0
190 continue
tr = -zr(k)
ti = -zi(k)
call waxpy(k-1,tr,ti,ar(1,k),ai(1,k),1,zr(1),zi(1),1)
200 continue
c make znorm = 1.0
s = 1.0d+0/wasum(n,zr,zi,1)
call wrscal(n,s,zr,zi,1)
ynorm = s*ynorm
c
if (anorm .ne. 0.0d+0) rcond = ynorm/anorm
if (anorm .eq. 0.0d+0) rcond = 0.0d+0
return
end
|