1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
subroutine wgesl(ar,ai,lda,n,ipvt,br,bi,job)
c Copyright INRIA
integer lda,n,ipvt(*),job
double precision ar(lda,*),ai(lda,*),br(*),bi(*)
c!purpose
c
c wgesl solves the double-complex system
c a * x = b or ctrans(a) * x = b
c using the factors computed by wgeco or wgefa.
c
c!calling sequence
c
c subroutine wgesl(ar,ai,lda,n,ipvt,br,bi,job)
c on entry
c
c a double-complex(lda, n)
c the output from wgeco or wgefa.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c ipvt integer(n)
c the pivot vector from wgeco or wgefa.
c
c b double-complex(n)
c the right hand side vector.
c
c job integer
c = 0 to solve a*x = b ,
c = nonzero to solve ctrans(a)*x = b where
c ctrans(a) is the conjugate transpose.
c
c on return
c
c b the solution vector x .
c
c error condition
c
c a division by zero will occur if the input factor contains a
c zero on the diagonal. technically this indicates singularity
c but it is often caused by improper arguments or improper
c setting of lda . it will not occur if the subroutines are
c called correctly and if wgeco has set rcond .gt. 0.0
c or wgefa has set info .eq. 0 .
c
c to compute inverse(a) * c where c is a matrix
c with p columns
c call wgeco(a,lda,n,ipvt,rcond,z)
c if (rcond is too small) go to ...
c do 10 j = 1, p
c call wgesl(a,lda,n,ipvt,c(1,j),0)
c 10 continue
c
c!originator
c linpack. this version dated 07/01/79 .
c cleve moler, university of new mexico, argonne national lab.
c
c!auxiliary routines
c
c blas waxpy,wdotc
c
c!
c internal variables
c
double precision wdotcr,wdotci,tr,ti
integer k,kb,l,nm1
c
nm1 = n - 1
if (job .ne. 0) go to 50
c
c job = 0 , solve a * x = b
c first solve l*y = b
c
if (nm1 .lt. 1) go to 30
do 20 k = 1, nm1
l = ipvt(k)
tr = br(l)
ti = bi(l)
if (l .eq. k) go to 10
br(l) = br(k)
bi(l) = bi(k)
br(k) = tr
bi(k) = ti
10 continue
call waxpy(n-k,tr,ti,ar(k+1,k),ai(k+1,k),1,br(k+1),bi(k+1),
* 1)
20 continue
30 continue
c
c now solve u*x = y
c
do 40 kb = 1, n
k = n + 1 - kb
call wdiv(br(k),bi(k),ar(k,k),ai(k,k),br(k),bi(k))
tr = -br(k)
ti = -bi(k)
call waxpy(k-1,tr,ti,ar(1,k),ai(1,k),1,br(1),bi(1),1)
40 continue
go to 100
50 continue
c
c job = nonzero, solve ctrans(a) * x = b
c first solve ctrans(u)*y = b
c
do 60 k = 1, n
tr = br(k) - wdotcr(k-1,ar(1,k),ai(1,k),1,br(1),bi(1),1)
ti = bi(k) - wdotci(k-1,ar(1,k),ai(1,k),1,br(1),bi(1),1)
call wdiv(tr,ti,ar(k,k),-ai(k,k),br(k),bi(k))
60 continue
c
c now solve ctrans(l)*x = y
c
if (nm1 .lt. 1) go to 90
do 80 kb = 1, nm1
k = n - kb
br(k) = br(k)
* + wdotcr(n-k,ar(k+1,k),ai(k+1,k),1,br(k+1),bi(k+1),1)
bi(k) = bi(k)
* + wdotci(n-k,ar(k+1,k),ai(k+1,k),1,br(k+1),bi(k+1),1)
l = ipvt(k)
if (l .eq. k) go to 70
tr = br(l)
ti = bi(l)
br(l) = br(k)
bi(l) = bi(k)
br(k) = tr
bi(k) = ti
70 continue
80 continue
90 continue
100 continue
return
end
|