1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
subroutine wqrsl(xr,xi,ldx,n,k,qrauxr,qrauxi,yr,yi,qyr,qyi,qtyr,
* qtyi,br,bi,rsdr,rsdi,xbr,xbi,job,info)
integer ldx,n,k,job,info
double precision xr(ldx,*),xi(ldx,*),qrauxr(*),qrauxi(*),yr(*),
* yi(*),qyr(*),qyi(*),qtyr(*),qtyi(*),br(*),bi(*),
* rsdr(*),rsdi(*),xbr(*),xbi(*)
c!purpose
c
c wqrsl applies the output of wqrdc to compute coordinate
c transformations, projections, and least squares solutions.
c for k .le. min(n,p), let xk be the matrix
c
c xk = (x(jpvt(1)),x(jpvt(2)), ... ,x(jpvt(k)))
c
c formed from columnns jpvt(1), ... ,jpvt(k) of the original
c n x p matrix x that was input to wqrdc (if no pivoting was
c done, xk consists of the first k columns of x in their
c original order). wqrdc produces a factored unitary matrix q
c and an upper triangular matrix r such that
c
c xk = q * (r)
c (0)
c
c this information is contained in coded form in the arrays
c x and qraux.
c
c!calling sequence
c
c subroutine wqrsl(xr,xi,ldx,n,k,qrauxr,qrauxi,yr,yi,qyr,qyi,qtyr,
c on entry
c
c x double-complex(ldx,p).
c x contains the output of wqrdc.
c
c ldx integer.
c ldx is the leading dimension of the array x.
c
c n integer.
c n is the number of rows of the matrix xk. it must
c have the same value as n in wqrdc.
c
c k integer.
c k is the number of columns of the matrix xk. k
c must nnot be greater than min(n,p), where p is the
c same as in the calling sequence to wqrdc.
c
c qraux double-complex(p).
c qraux contains the auxiliary output from wqrdc.
c
c y double-complex(n)
c y contains an n-vector that is to be manipulated
c by wqrsl.
c
c job integer.
c job specifies what is to be computed. job has
c the decimal expansion abcde, with the following
c meaning.
c
c if a.ne.0, compute qy.
c if b,c,d, or e .ne. 0, compute qty.
c if c.ne.0, compute b.
c if d.ne.0, compute rsd.
c if e.ne.0, compute xb.
c
c note that a request to compute b, rsd, or xb
c automatically triggers the computation of qty, for
c which an array must be provided in the calling
c sequence.
c
c on return
c
c qy double-complex(n).
c qy conntains q*y, if its computation has been
c requested.
c
c qty double-complex(n).
c qty contains ctrans(q)*y, if its computation has
c been requested. here ctrans(q) is the conjugate
c transpose of the matrix q.
c
c b double-complex(k)
c b contains the solution of the least squares problem
c
c minimize norm2(y - xk*b),
c
c if its computation has been requested. (note that
c if pivoting was requested in wqrdc, the j-th
c component of b will be associated with column jpvt(j)
c of the original matrix x that was input into wqrdc.)
c
c rsd double-complex(n).
c rsd contains the least squares residual y - xk*b,
c if its computation has been requested. rsd is
c also the orthogonal projection of y onto the
c orthogonal complement of the column space of xk.
c
c xb double-complex(n).
c xb contains the least squares approximation xk*b,
c if its computation has been requested. xb is also
c the orthogonal projection of y onto the column space
c of x.
c
c info integer.
c info is zero unless the computation of b has
c been requested and r is exactly singular. in
c this case, info is the index of the first zero
c diagonal element of r and b is left unaltered.
c
c the parameters qy, qty, b, rsd, and xb are not referenced
c if their computation is not requested and in this case
c can be replaced by dummy variables in the calling program.
c to save storage, the user may in some cases use the same
c array for different parameters in the calling sequence. a
c frequently occuring example is when one wishes to compute
c any of b, rsd, or xb and does not need y or qty. in this
c case one may identify y, qty, and one of b, rsd, or xb, while
c providing separate arrays for anything else that is to be
c computed. thus the calling sequence
c
c call wqrsl(x,ldx,n,k,qraux,y,dum,y,b,y,dum,110,info)
c
c will result in the computation of b and rsd, with rsd
c overwriting y. more generally, each item in the following
c list contains groups of permissible identifications for
c a single callinng sequence.
c
c 1. (y,qty,b) (rsd) (xb) (qy)
c
c 2. (y,qty,rsd) (b) (xb) (qy)
c
c 3. (y,qty,xb) (b) (rsd) (qy)
c
c 4. (y,qy) (qty,b) (rsd) (xb)
c
c 5. (y,qy) (qty,rsd) (b) (xb)
c
c 6. (y,qy) (qty,xb) (b) (rsd)
c
c in any group the value returned in the array allocated to
c the group corresponds to the last member of the group.
c
c!originator
c linpack. this version dated 07/03/79 .
c g.w. stewart, university of maryland, argonne national lab.
c
c!auxiliary routines
c
c blas waxpy,wcopy,wdotcr,wdotci
c fortran abs,dimag,min,mod
c
c Copyright INRIA
c!
c internal variables
c
integer i,j,jj,ju,kp1
double precision wdotcr,wdotci,tr,ti,tempr,tempi
logical cb,cqy,cqty,cr,cxb
c
double precision zdumr,zdumi
double precision cabs1
cabs1(zdumr,zdumi) = abs(zdumr) + abs(zdumi)
c
c set info flag.
c
info = 0
c
c determine what is to be computed.
c
cqy = job/10000 .ne. 0
cqty = mod(job,10000) .ne. 0
cb = mod(job,1000)/100 .ne. 0
cr = mod(job,100)/10 .ne. 0
cxb = mod(job,10) .ne. 0
ju = min(k,n-1)
c
c special action when n=1.
c
if (ju .ne. 0) go to 80
if (.not.cqy) go to 10
qyr(1) = yr(1)
qyi(1) = yi(1)
10 continue
if (.not.cqty) go to 20
qtyr(1) = yr(1)
qtyi(1) = yi(1)
20 continue
if (.not.cxb) go to 30
xbr(1) = yr(1)
xbi(1) = yi(1)
30 continue
if (.not.cb) go to 60
if (cabs1(xr(1,1),xi(1,1)) .ne. 0.0d+0) go to 40
info = 1
go to 50
40 continue
call wdiv(yr(1),yi(1),xr(1,1),xi(1,1),br(1),bi(1))
50 continue
60 continue
if (.not.cr) go to 70
rsdr(1) = 0.0d+0
rsdi(1) = 0.0d+0
70 continue
go to 290
80 continue
c
c set up to compute qy or qty.
c
if (cqy) call wcopy(n,yr,yi,1,qyr,qyi,1)
if (cqty) call wcopy(n,yr,yi,1,qtyr,qtyi,1)
if (.not.cqy) go to 110
c
c compute qy.
c
do 100 jj = 1, ju
j = ju - jj + 1
if (cabs1(qrauxr(j),qrauxi(j)) .eq. 0.0d+0)
* go to 90
tempr = xr(j,j)
tempi = xi(j,j)
xr(j,j) = qrauxr(j)
xi(j,j) = qrauxi(j)
tr = -wdotcr(n-j+1,xr(j,j),xi(j,j),1,qyr(j),qyi(j),1)
ti = -wdotci(n-j+1,xr(j,j),xi(j,j),1,qyr(j),qyi(j),1)
call wdiv(tr,ti,xr(j,j),xi(j,j),tr,ti)
call waxpy(n-j+1,tr,ti,xr(j,j),xi(j,j),1,qyr(j),
* qyi(j),1)
xr(j,j) = tempr
xi(j,j) = tempi
90 continue
100 continue
110 continue
if (.not.cqty) go to 140
c
c compute ctrans(q)*y.
c
do 130 j = 1, ju
if (cabs1(qrauxr(j),qrauxi(j)) .eq. 0.0d+0)
* go to 120
tempr = xr(j,j)
tempi = xi(j,j)
xr(j,j) = qrauxr(j)
xi(j,j) = qrauxi(j)
tr = -wdotcr(n-j+1,xr(j,j),xi(j,j),1,qtyr(j),
* qtyi(j),1)
ti = -wdotci(n-j+1,xr(j,j),xi(j,j),1,qtyr(j),
* qtyi(j),1)
call wdiv(tr,ti,xr(j,j),xi(j,j),tr,ti)
call waxpy(n-j+1,tr,ti,xr(j,j),xi(j,j),1,qtyr(j),
* qtyi(j),1)
xr(j,j) = tempr
xi(j,j) = tempi
120 continue
130 continue
140 continue
c
c set up to compute b, rsd, or xb.
c
if (cb) call wcopy(k,qtyr,qtyi,1,br,bi,1)
kp1 = k + 1
if (cxb) call wcopy(k,qtyr,qtyi,1,xbr,xbi,1)
if (cr .and. k .lt. n)
* call wcopy(n-k,qtyr(kp1),qtyi(kp1),1,rsdr(kp1),rsdi(kp1),1)
if (.not.cxb .or. kp1 .gt. n) go to 160
do 150 i = kp1, n
xbr(i) = 0.0d+0
xbi(i) = 0.0d+0
150 continue
160 continue
if (.not.cr) go to 180
do 170 i = 1, k
rsdr(i) = 0.0d+0
rsdi(i) = 0.0d+0
170 continue
180 continue
if (.not.cb) go to 230
c
c compute b.
c
do 210 jj = 1, k
j = k - jj + 1
if (cabs1(xr(j,j),xi(j,j)) .ne. 0.0d+0) go to 190
info = j
c ......exit
c ......exit
go to 220
190 continue
call wdiv(br(j),bi(j),xr(j,j),xi(j,j),br(j),bi(j))
if (j .eq. 1) go to 200
tr = -br(j)
ti = -bi(j)
call waxpy(j-1,tr,ti,xr(1,j),xi(1,j),1,br,bi,1)
200 continue
210 continue
220 continue
230 continue
if (.not.cr .and. .not.cxb) go to 280
c
c compute rsd or xb as required.
c
do 270 jj = 1, ju
j = ju - jj + 1
if (cabs1(qrauxr(j),qrauxi(j)) .eq. 0.0d+0)
* go to 260
tempr = xr(j,j)
tempi = xi(j,j)
xr(j,j) = qrauxr(j)
xi(j,j) = qrauxi(j)
if (.not.cr) go to 240
tr = -wdotcr(n-j+1,xr(j,j),xi(j,j),1,rsdr(j),
* rsdi(j),1)
ti = -wdotci(n-j+1,xr(j,j),xi(j,j),1,rsdr(j),
* rsdi(j),1)
call wdiv(tr,ti,xr(j,j),xi(j,j),tr,ti)
call waxpy(n-j+1,tr,ti,xr(j,j),xi(j,j),1,rsdr(j),
* rsdi(j),1)
240 continue
if (.not.cxb) go to 250
tr = -wdotcr(n-j+1,xr(j,j),xi(j,j),1,xbr(j),
* xbi(j),1)
ti = -wdotci(n-j+1,xr(j,j),xi(j,j),1,xbr(j),
* xbi(j),1)
call wdiv(tr,ti,xr(j,j),xi(j,j),tr,ti)
call waxpy(n-j+1,tr,ti,xr(j,j),xi(j,j),1,xbr(j),
* xbi(j),1)
250 continue
xr(j,j) = tempr
xi(j,j) = tempi
260 continue
270 continue
280 continue
290 continue
return
end
|