File: wqrsl.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (334 lines) | stat: -rw-r--r-- 11,517 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
      subroutine wqrsl(xr,xi,ldx,n,k,qrauxr,qrauxi,yr,yi,qyr,qyi,qtyr,
     *     qtyi,br,bi,rsdr,rsdi,xbr,xbi,job,info)
      integer ldx,n,k,job,info
      double precision xr(ldx,*),xi(ldx,*),qrauxr(*),qrauxi(*),yr(*),
     *                 yi(*),qyr(*),qyi(*),qtyr(*),qtyi(*),br(*),bi(*),
     *                 rsdr(*),rsdi(*),xbr(*),xbi(*)
c!purpose
c
c     wqrsl applies the output of wqrdc to compute coordinate
c     transformations, projections, and least squares solutions.
c     for k .le. min(n,p), let xk be the matrix
c
c            xk = (x(jpvt(1)),x(jpvt(2)), ... ,x(jpvt(k)))
c
c     formed from columnns jpvt(1), ... ,jpvt(k) of the original
c     n x p matrix x that was input to wqrdc (if no pivoting was
c     done, xk consists of the first k columns of x in their
c     original order).  wqrdc produces a factored unitary matrix q
c     and an upper triangular matrix r such that
c
c              xk = q * (r)
c                       (0)
c
c     this information is contained in coded form in the arrays
c     x and qraux.
c
c!calling sequence
c
c      subroutine wqrsl(xr,xi,ldx,n,k,qrauxr,qrauxi,yr,yi,qyr,qyi,qtyr,
c     on entry
c
c        x      double-complex(ldx,p).
c               x contains the output of wqrdc.
c
c        ldx    integer.
c               ldx is the leading dimension of the array x.
c
c        n      integer.
c               n is the number of rows of the matrix xk.  it must
c               have the same value as n in wqrdc.
c
c        k      integer.
c               k is the number of columns of the matrix xk.  k
c               must nnot be greater than min(n,p), where p is the
c               same as in the calling sequence to wqrdc.
c
c        qraux  double-complex(p).
c               qraux contains the auxiliary output from wqrdc.
c
c        y      double-complex(n)
c               y contains an n-vector that is to be manipulated
c               by wqrsl.
c
c        job    integer.
c               job specifies what is to be computed.  job has
c               the decimal expansion abcde, with the following
c               meaning.
c
c                    if a.ne.0, compute qy.
c                    if b,c,d, or e .ne. 0, compute qty.
c                    if c.ne.0, compute b.
c                    if d.ne.0, compute rsd.
c                    if e.ne.0, compute xb.
c
c               note that a request to compute b, rsd, or xb
c               automatically triggers the computation of qty, for
c               which an array must be provided in the calling
c               sequence.
c
c     on return
c
c        qy     double-complex(n).
c               qy conntains q*y, if its computation has been
c               requested.
c
c        qty    double-complex(n).
c               qty contains ctrans(q)*y, if its computation has
c               been requested.  here ctrans(q) is the conjugate
c               transpose of the matrix q.
c
c        b      double-complex(k)
c               b contains the solution of the least squares problem
c
c                    minimize norm2(y - xk*b),
c
c               if its computation has been requested.  (note that
c               if pivoting was requested in wqrdc, the j-th
c               component of b will be associated with column jpvt(j)
c               of the original matrix x that was input into wqrdc.)
c
c        rsd    double-complex(n).
c               rsd contains the least squares residual y - xk*b,
c               if its computation has been requested.  rsd is
c               also the orthogonal projection of y onto the
c               orthogonal complement of the column space of xk.
c
c        xb     double-complex(n).
c               xb contains the least squares approximation xk*b,
c               if its computation has been requested.  xb is also
c               the orthogonal projection of y onto the column space
c               of x.
c
c        info   integer.
c               info is zero unless the computation of b has
c               been requested and r is exactly singular.  in
c               this case, info is the index of the first zero
c               diagonal element of r and b is left unaltered.
c
c     the parameters qy, qty, b, rsd, and xb are not referenced
c     if their computation is not requested and in this case
c     can be replaced by dummy variables in the calling program.
c     to save storage, the user may in some cases use the same
c     array for different parameters in the calling sequence.  a
c     frequently occuring example is when one wishes to compute
c     any of b, rsd, or xb and does not need y or qty.  in this
c     case one may identify y, qty, and one of b, rsd, or xb, while
c     providing separate arrays for anything else that is to be
c     computed.  thus the calling sequence
c
c          call wqrsl(x,ldx,n,k,qraux,y,dum,y,b,y,dum,110,info)
c
c     will result in the computation of b and rsd, with rsd
c     overwriting y.  more generally, each item in the following
c     list contains groups of permissible identifications for
c     a single callinng sequence.
c
c          1. (y,qty,b) (rsd) (xb) (qy)
c
c          2. (y,qty,rsd) (b) (xb) (qy)
c
c          3. (y,qty,xb) (b) (rsd) (qy)
c
c          4. (y,qy) (qty,b) (rsd) (xb)
c
c          5. (y,qy) (qty,rsd) (b) (xb)
c
c          6. (y,qy) (qty,xb) (b) (rsd)
c
c     in any group the value returned in the array allocated to
c     the group corresponds to the last member of the group.
c
c!originator
c     linpack. this version dated 07/03/79 .
c     g.w. stewart, university of maryland, argonne national lab.
c
c!auxiliary routines
c
c     blas waxpy,wcopy,wdotcr,wdotci
c     fortran abs,dimag,min,mod
c
c     Copyright INRIA

c!
c     internal variables
c
      integer i,j,jj,ju,kp1
      double precision wdotcr,wdotci,tr,ti,tempr,tempi
      logical cb,cqy,cqty,cr,cxb
c
      double precision zdumr,zdumi
      double precision cabs1
      cabs1(zdumr,zdumi) = abs(zdumr) + abs(zdumi)
c
c     set info flag.
c
      info = 0
c
c     determine what is to be computed.
c
      cqy = job/10000 .ne. 0
      cqty = mod(job,10000) .ne. 0
      cb = mod(job,1000)/100 .ne. 0
      cr = mod(job,100)/10 .ne. 0
      cxb = mod(job,10) .ne. 0
      ju = min(k,n-1)
c
c     special action when n=1.
c
      if (ju .ne. 0) go to 80
         if (.not.cqy) go to 10
            qyr(1) = yr(1)
            qyi(1) = yi(1)
   10    continue
         if (.not.cqty) go to 20
            qtyr(1) = yr(1)
            qtyi(1) = yi(1)
   20    continue
         if (.not.cxb) go to 30
            xbr(1) = yr(1)
            xbi(1) = yi(1)
   30    continue
         if (.not.cb) go to 60
            if (cabs1(xr(1,1),xi(1,1)) .ne. 0.0d+0) go to 40
               info = 1
            go to 50
   40       continue
               call wdiv(yr(1),yi(1),xr(1,1),xi(1,1),br(1),bi(1))
   50       continue
   60    continue
         if (.not.cr) go to 70
            rsdr(1) = 0.0d+0
            rsdi(1) = 0.0d+0
   70    continue
      go to 290
   80 continue
c
c        set up to compute qy or qty.
c
         if (cqy) call wcopy(n,yr,yi,1,qyr,qyi,1)
         if (cqty) call wcopy(n,yr,yi,1,qtyr,qtyi,1)
         if (.not.cqy) go to 110
c
c           compute qy.
c
            do 100 jj = 1, ju
               j = ju - jj + 1
               if (cabs1(qrauxr(j),qrauxi(j)) .eq. 0.0d+0)
     *            go to 90
                  tempr = xr(j,j)
                  tempi = xi(j,j)
                  xr(j,j) = qrauxr(j)
                  xi(j,j) = qrauxi(j)
                  tr = -wdotcr(n-j+1,xr(j,j),xi(j,j),1,qyr(j),qyi(j),1)
                  ti = -wdotci(n-j+1,xr(j,j),xi(j,j),1,qyr(j),qyi(j),1)
                  call wdiv(tr,ti,xr(j,j),xi(j,j),tr,ti)
                  call waxpy(n-j+1,tr,ti,xr(j,j),xi(j,j),1,qyr(j),
     *                       qyi(j),1)
                  xr(j,j) = tempr
                  xi(j,j) = tempi
   90          continue
  100       continue
  110    continue
         if (.not.cqty) go to 140
c
c           compute ctrans(q)*y.
c
            do 130 j = 1, ju
               if (cabs1(qrauxr(j),qrauxi(j)) .eq. 0.0d+0)
     *            go to 120
                  tempr = xr(j,j)
                  tempi = xi(j,j)
                  xr(j,j) = qrauxr(j)
                  xi(j,j) = qrauxi(j)
                  tr = -wdotcr(n-j+1,xr(j,j),xi(j,j),1,qtyr(j),
     *                         qtyi(j),1)
                  ti = -wdotci(n-j+1,xr(j,j),xi(j,j),1,qtyr(j),
     *                         qtyi(j),1)
                  call wdiv(tr,ti,xr(j,j),xi(j,j),tr,ti)
                  call waxpy(n-j+1,tr,ti,xr(j,j),xi(j,j),1,qtyr(j),
     *                       qtyi(j),1)
                  xr(j,j) = tempr
                  xi(j,j) = tempi
  120          continue
  130       continue
  140    continue
c
c        set up to compute b, rsd, or xb.
c
         if (cb) call wcopy(k,qtyr,qtyi,1,br,bi,1)
         kp1 = k + 1
         if (cxb) call wcopy(k,qtyr,qtyi,1,xbr,xbi,1)
         if (cr .and. k .lt. n)
     *      call wcopy(n-k,qtyr(kp1),qtyi(kp1),1,rsdr(kp1),rsdi(kp1),1)
         if (.not.cxb .or. kp1 .gt. n) go to 160
            do 150 i = kp1, n
               xbr(i) = 0.0d+0
               xbi(i) = 0.0d+0
  150       continue
  160    continue
         if (.not.cr) go to 180
            do 170 i = 1, k
               rsdr(i) = 0.0d+0
               rsdi(i) = 0.0d+0
  170       continue
  180    continue
         if (.not.cb) go to 230
c
c           compute b.
c
            do 210 jj = 1, k
               j = k - jj + 1
               if (cabs1(xr(j,j),xi(j,j)) .ne. 0.0d+0) go to 190
                  info = j
c                 ......exit
c           ......exit
                  go to 220
  190          continue
               call wdiv(br(j),bi(j),xr(j,j),xi(j,j),br(j),bi(j))
               if (j .eq. 1) go to 200
                  tr = -br(j)
                  ti = -bi(j)
                  call waxpy(j-1,tr,ti,xr(1,j),xi(1,j),1,br,bi,1)
  200          continue
  210       continue
  220       continue
  230    continue
         if (.not.cr .and. .not.cxb) go to 280
c
c           compute rsd or xb as required.
c
            do 270 jj = 1, ju
               j = ju - jj + 1
               if (cabs1(qrauxr(j),qrauxi(j)) .eq. 0.0d+0)
     *            go to 260
                  tempr = xr(j,j)
                  tempi = xi(j,j)
                  xr(j,j) = qrauxr(j)
                  xi(j,j) = qrauxi(j)
                  if (.not.cr) go to 240
                     tr = -wdotcr(n-j+1,xr(j,j),xi(j,j),1,rsdr(j),
     *                            rsdi(j),1)
                     ti = -wdotci(n-j+1,xr(j,j),xi(j,j),1,rsdr(j),
     *                            rsdi(j),1)
                     call wdiv(tr,ti,xr(j,j),xi(j,j),tr,ti)
                     call waxpy(n-j+1,tr,ti,xr(j,j),xi(j,j),1,rsdr(j),
     *                          rsdi(j),1)
  240             continue
                  if (.not.cxb) go to 250
                     tr = -wdotcr(n-j+1,xr(j,j),xi(j,j),1,xbr(j),
     *                            xbi(j),1)
                     ti = -wdotci(n-j+1,xr(j,j),xi(j,j),1,xbr(j),
     *                            xbi(j),1)
                     call wdiv(tr,ti,xr(j,j),xi(j,j),tr,ti)
                     call waxpy(n-j+1,tr,ti,xr(j,j),xi(j,j),1,xbr(j),
     *                          xbi(j),1)
  250             continue
                  xr(j,j) = tempr
                  xi(j,j) = tempi
  260          continue
  270       continue
  280    continue
  290 continue
      return
      end