1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
subroutine wsvdc(xr,xi,ldx,n,p,sr,si,er,ei,ur,ui,ldu,vr,vi,ldv,
* workr,worki,job,info)
integer ldx,n,p,ldu,ldv,job,info
double precision xr(ldx,*),xi(ldx,*),sr(1),si(1),er(1),ei(1),
* ur(ldu,*),ui(ldu,*),vr(ldv,*),vi(ldv,*),
* workr(1),worki(1)
c!purpose
c
c
c wsvdc is a subroutine to reduce a double-complex nxp matrix x by
c unitary transformations u and v to diagonal form. the
c diagonal elements s(i) are the singular values of x. the
c columns of u are the corresponding left singular vectors,
c and the columns of v the right singular vectors.
c
c!calling sequence
c
c subroutine wsvdc(xr,xi,ldx,n,p,sr,si,er,ei,ur,ui,ldu,vr,vi,ldv,
c on entry
c
c x double-complex(ldx,p), where ldx.ge.n.
c x contains the matrix whose singular value
c decomposition is to be computed. x is
c destroyed by wsvdc.
c
c n integer.
c n is the number of rows of the matrix x.
c
c p integer.
c p is the number of columns of the matrix x.
c
c ldx integer.
c ldx is the leading dimension of the array x.
c
c ldu integer.
c ldu is the leading dimension of the array u
c (see below).
c
c ldv integer.
c ldv is the leading dimension of the array v
c (see below).
c
c work double-complex(n).
c work is a scratch array.
c
c job integer.
c job controls the computation of the singular
c vectors. it has the decimal expansion ab
c with the following meaning
c
c a.eq.0 do not compute the left singular
c vectors.
c a.eq.1 return the n left singular vectors
c in u.
c a.ge.2 returns the first min(n,p)
c left singular vectors in u.
c b.eq.0 do not compute the right singular
c vectors.
c b.eq.1 return the right singular vectors
c in v.
c
c on return
c
c s double-complex(mm), where mm=min(n+1,p).
c the first min(n,p) entries of s contain the
c singular values of x arranged in descending
c order of magnitude.
c
c e double-complex(p).
c e ordinarily contains zeros. however see the
c discussion of info for exceptions.
c
c u double-complex(ldu,k), where ldu.ge.n.
c if joba.eq.1 then k.eq.n,
c if joba.eq.2 then k.eq.min(n,p).
c u contains the matrix of right singular vectors.
c u is not referenced if joba.eq.0. if n.le.p
c or if joba.gt.2, then u may be identified with x
c in the subroutine call.
c
c v double-complex(ldv,p), where ldv.ge.p.
c v contains the matrix of right singular vectors.
c v is not referenced if jobb.eq.0. if p.le.n,
c then v may be identified whth x in the
c subroutine call.
c
c info integer.
c the singular values (and their corresponding
c singular vectors) s(info+1),s(info+2),...,s(m)
c are correct (here m=min(n,p)). thus if
c info.eq.0, all the singular values and their
c vectors are correct. in any event, the matrix
c b = ctrans(u)*x*v is the bidiagonal matrix
c with the elements of s on its diagonal and the
c elements of e on its super-diagonal (ctrans(u)
c is the conjugate-transpose of u). thus the
c singular values of x and b are the same.
c
c!originator
c linpack. this version dated 07/03/79 .
c g.w. stewart, university of maryland, argonne national lab.
c
c!auxiliary routines
c
c blas waxpy,pythag,wdotcr,wdotci,wscal,wswap,wnrm2,drotg
c fortran abs,dimag,max
c fortran max,min,mod,sqrt
c
c!
c Copyright INRIA
c internal variables
c
integer i,iter,j,jobu,k,kase,kk,l,ll,lls,lm1,lp1,ls,lu,m,maxit,
* mm,mm1,mp1,nct,nctp1,ncu,nrt,nrtp1
double precision pythag,wdotcr,wdotci,tr,ti,rr,ri
double precision b,c,cs,el,emm1,f,g,wnrm2,scale,shift,sl,sm,sn,
* smm1,t1,test,ztest
logical wantu,wantv
c
double precision zdumr,zdumi
double precision cabs1
cabs1(zdumr,zdumi) = abs(zdumr) + abs(zdumi)
c
c set the maximum number of iterations.
c MODIFIED ACCORDING TO EISPACK HQR2
c
maxit = 30*min(n,p)
c
c
c determine what is to be computed.
c
wantu = .false.
wantv = .false.
jobu = mod(job,100)/10
ncu = n
if (jobu .gt. 1) ncu = min(n,p)
if (jobu .ne. 0) wantu = .true.
if (mod(job,10) .ne. 0) wantv = .true.
c
c reduce x to bidiagonal form, storing the diagonal elements
c in s and the super-diagonal elements in e.
c
info = 0
nct = min(n-1,p)
nrt = max(0,min(p-2,n))
lu = max(nct,nrt)
if (lu .lt. 1) go to 190
do 180 l = 1, lu
lp1 = l + 1
if (l .gt. nct) go to 30
c
c compute the transformation for the l-th column and
c place the l-th diagonal in s(l).
c
sr(l) = wnrm2(n-l+1,xr(l,l),xi(l,l),1)
si(l) = 0.0d+0
if (cabs1(sr(l),si(l)) .eq. 0.0d+0) go to 20
if (cabs1(xr(l,l),xi(l,l)) .eq. 0.0d+0) go to 10
call wsign(sr(l),si(l),xr(l,l),xi(l,l),sr(l),si(l))
10 continue
call wdiv(1.0d+0,0.0d+0,sr(l),si(l),tr,ti)
call wscal(n-l+1,tr,ti,xr(l,l),xi(l,l),1)
xr(l,l) = 1.0d+0 + xr(l,l)
20 continue
sr(l) = -sr(l)
si(l) = -si(l)
30 continue
if (p .lt. lp1) go to 60
do 50 j = lp1, p
if (l .gt. nct) go to 40
if (cabs1(sr(l),si(l)) .eq. 0.0d+0) go to 40
c
c apply the transformation.
c
tr = -wdotcr(n-l+1,xr(l,l),xi(l,l),1,xr(l,j),xi(l,j),1)
ti = -wdotci(n-l+1,xr(l,l),xi(l,l),1,xr(l,j),xi(l,j),1)
call wdiv(tr,ti,xr(l,l),xi(l,l),tr,ti)
call waxpy(n-l+1,tr,ti,xr(l,l),xi(l,l),1,xr(l,j),
* xi(l,j),1)
40 continue
c
c place the l-th row of x into e for the
c subsequent calculation of the row transformation.
c
er(j) = xr(l,j)
ei(j) = -xi(l,j)
50 continue
60 continue
if (.not.wantu .or. l .gt. nct) go to 80
c
c place the transformation in u for subsequent back
c multiplication.
c
do 70 i = l, n
ur(i,l) = xr(i,l)
ui(i,l) = xi(i,l)
70 continue
80 continue
if (l .gt. nrt) go to 170
c
c compute the l-th row transformation and place the
c l-th super-diagonal in e(l).
c
er(l) = wnrm2(p-l,er(lp1),ei(lp1),1)
ei(l) = 0.0d+0
if (cabs1(er(l),ei(l)) .eq. 0.0d+0) go to 100
if (cabs1(er(lp1),ei(lp1)) .eq. 0.0d+0) go to 90
call wsign(er(l),ei(l),er(lp1),ei(lp1),er(l),ei(l))
90 continue
call wdiv(1.0d+0,0.0d+0,er(l),ei(l),tr,ti)
call wscal(p-l,tr,ti,er(lp1),ei(lp1),1)
er(lp1) = 1.0d+0 + er(lp1)
100 continue
er(l) = -er(l)
ei(l) = +ei(l)
if (lp1 .gt. n .or. cabs1(er(l),ei(l)) .eq. 0.0d+0)
* go to 140
c
c apply the transformation.
c
do 110 i = lp1, n
workr(i) = 0.0d+0
worki(i) = 0.0d+0
110 continue
do 120 j = lp1, p
call waxpy(n-l,er(j),ei(j),xr(lp1,j),xi(lp1,j),1,
* workr(lp1),worki(lp1),1)
120 continue
do 130 j = lp1, p
call wdiv(-er(j),-ei(j),er(lp1),ei(lp1),tr,ti)
call waxpy(n-l,tr,-ti,workr(lp1),worki(lp1),1,
* xr(lp1,j),xi(lp1,j),1)
130 continue
140 continue
if (.not.wantv) go to 160
c
c place the transformation in v for subsequent
c back multiplication.
c
do 150 i = lp1, p
vr(i,l) = er(i)
vi(i,l) = ei(i)
150 continue
160 continue
170 continue
180 continue
190 continue
c
c set up the final bidiagonal matrix or order m.
c
m = min(p,n+1)
nctp1 = nct + 1
nrtp1 = nrt + 1
if (nct .ge. p) go to 200
sr(nctp1) = xr(nctp1,nctp1)
si(nctp1) = xi(nctp1,nctp1)
200 continue
if (n .ge. m) go to 210
sr(m) = 0.0d+0
si(m) = 0.0d+0
210 continue
if (nrtp1 .ge. m) go to 220
er(nrtp1) = xr(nrtp1,m)
ei(nrtp1) = xi(nrtp1,m)
220 continue
er(m) = 0.0d+0
ei(m) = 0.0d+0
c
c if required, generate u.
c
if (.not.wantu) go to 350
if (ncu .lt. nctp1) go to 250
do 240 j = nctp1, ncu
do 230 i = 1, n
ur(i,j) = 0.0d+0
ui(i,j) = 0.0d+0
230 continue
ur(j,j) = 1.0d+0
ui(j,j) = 0.0d+0
240 continue
250 continue
if (nct .lt. 1) go to 340
do 330 ll = 1, nct
l = nct - ll + 1
if (cabs1(sr(l),si(l)) .eq. 0.0d+0) go to 300
lp1 = l + 1
if (ncu .lt. lp1) go to 270
do 260 j = lp1, ncu
tr = -wdotcr(n-l+1,ur(l,l),ui(l,l),1,ur(l,j),
* ui(l,j),1)
ti = -wdotci(n-l+1,ur(l,l),ui(l,l),1,ur(l,j),
* ui(l,j),1)
call wdiv(tr,ti,ur(l,l),ui(l,l),tr,ti)
call waxpy(n-l+1,tr,ti,ur(l,l),ui(l,l),1,ur(l,j),
* ui(l,j),1)
260 continue
270 continue
call wrscal(n-l+1,-1.0d+0,ur(l,l),ui(l,l),1)
ur(l,l) = 1.0d+0 + ur(l,l)
lm1 = l - 1
if (lm1 .lt. 1) go to 290
do 280 i = 1, lm1
ur(i,l) = 0.0d+0
ui(i,l) = 0.0d+0
280 continue
290 continue
go to 320
300 continue
do 310 i = 1, n
ur(i,l) = 0.0d+0
ui(i,l) = 0.0d+0
310 continue
ur(l,l) = 1.0d+0
ui(l,l) = 0.0d+0
320 continue
330 continue
340 continue
350 continue
c
c if it is required, generate v.
c
if (.not.wantv) go to 400
do 390 ll = 1, p
l = p - ll + 1
lp1 = l + 1
if (l .gt. nrt) go to 370
if (cabs1(er(l),ei(l)) .eq. 0.0d+0) go to 370
do 360 j = lp1, p
tr = -wdotcr(p-l,vr(lp1,l),vi(lp1,l),1,vr(lp1,j),
* vi(lp1,j),1)
ti = -wdotci(p-l,vr(lp1,l),vi(lp1,l),1,vr(lp1,j),
* vi(lp1,j),1)
call wdiv(tr,ti,vr(lp1,l),vi(lp1,l),tr,ti)
call waxpy(p-l,tr,ti,vr(lp1,l),vi(lp1,l),1,vr(lp1,j),
* vi(lp1,j),1)
360 continue
370 continue
do 380 i = 1, p
vr(i,l) = 0.0d+0
vi(i,l) = 0.0d+0
380 continue
vr(l,l) = 1.0d+0
vi(l,l) = 0.0d+0
390 continue
400 continue
c
c transform s and e so that they are real.
c
do 420 i = 1, m
tr = pythag(sr(i),si(i))
if (tr .eq. 0.0d+0) go to 405
rr = sr(i)/tr
ri = si(i)/tr
sr(i) = tr
si(i) = 0.0d+0
if (i .lt. m) call wdiv(er(i),ei(i),rr,ri,er(i),ei(i))
if (wantu) call wscal(n,rr,ri,ur(1,i),ui(1,i),1)
405 continue
c ...exit
if (i .eq. m) go to 430
tr = pythag(er(i),ei(i))
if (tr .eq. 0.0d+0) go to 410
call wdiv(tr,0.0d+0,er(i),ei(i),rr,ri)
er(i) = tr
ei(i) = 0.0d+0
call wmul(sr(i+1),si(i+1),rr,ri,sr(i+1),si(i+1))
if (wantv) call wscal(p,rr,ri,vr(1,i+1),vi(1,i+1),1)
410 continue
420 continue
430 continue
c
c main iteration loop for the singular values.
c
mm = m
iter = 0
440 continue
c
c quit if all the singular values have been found.
c
c ...exit
if (m .eq. 0) go to 700
c
c if too many iterations have been performed, set
c flag and return.
c
if (iter .lt. maxit) go to 450
info = m
c ......exit
go to 700
450 continue
c
c this section of the program inspects for
c negligible elements in the s and e arrays. on
c completion the variable kase is set as follows.
c
c kase = 1 if sr(m) and er(l-1) are negligible and l.lt.m
c kase = 2 if sr(l) is negligible and l.lt.m
c kase = 3 if er(l-1) is negligible, l.lt.m, and
c sr(l), ..., sr(m) are not negligible (qr step).
c kase = 4 if er(m-1) is negligible (convergence).
c
do 470 ll = 1, m
l = m - ll
c ...exit
if (l .eq. 0) go to 480
test = pythag(sr(l),si(l)) + pythag(sr(l+1),si(l+1))
ztest = test + pythag(er(l),ei(l))
if (ztest .ne. test) go to 460
er(l) = 0.0d+0
ei(l) = 0.0d+0
c ......exit
go to 480
460 continue
470 continue
480 continue
if (l .ne. m - 1) go to 490
kase = 4
go to 560
490 continue
lp1 = l + 1
mp1 = m + 1
do 510 lls = lp1, mp1
ls = m - lls + lp1
c ...exit
if (ls .eq. l) go to 520
test = 0.0d+0
if (ls .ne. m) test=test + pythag(er(ls),ei(ls))
if (ls .ne. l + 1) test=test + pythag(er(ls-1),ei(ls-1))
ztest = test + pythag(sr(ls),si(ls))
if (ztest .ne. test) go to 500
sr(ls) = 0.0d+0
si(ls) = 0.0d+0
c ......exit
go to 520
500 continue
510 continue
520 continue
if (ls .ne. l) go to 530
kase = 3
go to 550
530 continue
if (ls .ne. m) go to 540
kase = 1
go to 550
540 continue
kase = 2
l = ls
550 continue
560 continue
l = l + 1
c
c perform the task indicated by kase.
c
go to (570, 600, 620, 650), kase
c
c deflate negligible s(m).
c
570 continue
mm1 = m - 1
f = er(m-1)
er(m-1) = 0.0d+0
ei(m-1) = 0.0d+0
do 590 kk = l, mm1
k = mm1 - kk + l
t1 = sr(k)
call drotg(t1,f,cs,sn)
sr(k) = t1
si(k) = 0.0d0
if (k .eq. l) go to 580
f = -sn*er(k-1)
er(k-1) = cs*er(k-1)
ei(k-1) = cs*ei(k-1)
580 continue
if (wantv) call drot(p,vr(1,k),1,vr(1,m),1,cs,sn)
if (wantv) call drot(p,vi(1,k),1,vi(1,m),1,cs,sn)
590 continue
go to 690
c
c split at negligible s(l).
c
600 continue
f = er(l-1)
er(l-1) = 0.0d+0
ei(l-1) = 0.0d+0
do 610 k = l, m
t1 = sr(k)
call drotg(t1,f,cs,sn)
sr(k) = t1
si(k) = 0.0d0
f = -sn*er(k)
er(k) = cs*er(k)
ei(k) = cs*ei(k)
if (wantu) call drot(n,ur(1,k),1,ur(1,l-1),1,cs,sn)
if (wantu) call drot(n,ui(1,k),1,ui(1,l-1),1,cs,sn)
610 continue
go to 690
c
c perform one qr step.
c
620 continue
c
c calculate the shift.
c
scale = max(pythag(sr(m),si(m)),pythag(sr(m-1),si(m-1)),
* pythag(er(m-1),ei(m-1)),
* pythag(sr(l),si(l)),pythag(er(l),ei(l)))
sm = sr(m)/scale
smm1 = sr(m-1)/scale
emm1 = er(m-1)/scale
sl = sr(l)/scale
el = er(l)/scale
b = ((smm1 + sm)*(smm1 - sm) + emm1**2)/2.0d+0
c = (sm*emm1)**2
shift = 0.0d+0
if (b .eq. 0.0d+0 .and. c .eq. 0.0d+0) go to 630
shift = sqrt(b**2+c)
if (b .lt. 0.0d+0) shift = -shift
shift = c/(b + shift)
630 continue
c f = (sl + sm)*(sl - sm) - shift
f=(sl+sm)*(sl-sm)+shift
g = sl*el
c
c chase zeros.
c
mm1 = m - 1
do 640 k = l, mm1
call drotg(f,g,cs,sn)
if (k .ne. l) then
er(k-1) = f
ei(k-1) = 0.0d0
endif
f = cs*sr(k) + sn*er(k)
er(k) = cs*er(k) - sn*sr(k)
ei(k) = cs*ei(k) - sn*si(k)
g = sn*sr(k+1)
sr(k+1) = cs*sr(k+1)
si(k+1) = cs*si(k+1)
if (wantv) call drot(p,vr(1,k),1,vr(1,k+1),1,cs,sn)
if (wantv) call drot(p,vi(1,k),1,vi(1,k+1),1,cs,sn)
call drotg(f,g,cs,sn)
sr(k) = f
si(k) = 0.0d0
f = cs*er(k) + sn*sr(k+1)
sr(k+1) = -sn*er(k) + cs*sr(k+1)
si(k+1) = -sn*ei(k) + cs*si(k+1)
g = sn*er(k+1)
er(k+1) = cs*er(k+1)
ei(k+1) = cs*ei(k+1)
if (wantu .and. k .lt. n)
* call drot(n,ur(1,k),1,ur(1,k+1),1,cs,sn)
if (wantu .and. k .lt. n)
* call drot(n,ui(1,k),1,ui(1,k+1),1,cs,sn)
640 continue
er(m-1) = f
ei(m-1) = 0.0d0
iter = iter + 1
go to 690
c
c convergence
c
650 continue
c
c make the singular value positive
c
if (sr(l) .ge. 0.0d+0) go to 660
sr(l) = -sr(l)
si(l) = -si(l)
if (wantv) call wrscal(p,-1.0d+0,vr(1,l),vi(1,l),1)
660 continue
c
c order the singular value.
c
670 if (l .eq. mm) go to 680
c ...exit
if (sr(l) .ge. sr(l+1)) go to 680
tr = sr(l)
sr(l) = sr(l+1)
sr(l+1) = tr
tr = si(l)
si(l) = si(l+1)
si(l+1) = tr
if (wantv .and. l .lt. p)
* call wswap(p,vr(1,l),vi(1,l),1,vr(1,l+1),vi(1,l+1),1)
if (wantu .and. l .lt. n)
* call wswap(n,ur(1,l),ui(1,l),1,ur(1,l+1),ui(1,l+1),1)
l = l + 1
go to 670
680 continue
iter = 0
m = m - 1
690 continue
go to 440
700 continue
return
end
|