File: bratio.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (236 lines) | stat: -rw-r--r-- 5,717 bytes parent folder | download | duplicates (24)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
      SUBROUTINE bratio(a,b,x,y,w,w1,ierr)
C-----------------------------------------------------------------------
C
C            EVALUATION OF THE INCOMPLETE BETA FUNCTION IX(A,B)
C
C                     --------------------
C
C     IT IS ASSUMED THAT A AND B ARE NONNEGATIVE, AND THAT X .LE. 1
C     AND Y = 1 - X.  BRATIO ASSIGNS W AND W1 THE VALUES
C
C                      W  = IX(A,B)
C                      W1 = 1 - IX(A,B)
C
C     IERR IS A VARIABLE THAT REPORTS THE STATUS OF THE RESULTS.
C     IF NO INPUT ERRORS ARE DETECTED THEN IERR IS SET TO 0 AND
C     W AND W1 ARE COMPUTED. OTHERWISE, IF AN ERROR IS DETECTED,
C     THEN W AND W1 ARE ASSIGNED THE VALUE 0 AND IERR IS SET TO
C     ONE OF THE FOLLOWING VALUES ...
C
C        IERR = 1  IF A OR B IS NEGATIVE
C        IERR = 2  IF A = B = 0
C        IERR = 3  IF X .LT. 0 OR X .GT. 1
C        IERR = 4  IF Y .LT. 0 OR Y .GT. 1
C        IERR = 5  IF X + Y .NE. 1
C        IERR = 6  IF X = A = 0
C        IERR = 7  IF Y = B = 0
C
C--------------------
C     WRITTEN BY ALFRED H. MORRIS, JR.
C        NAVAL SURFACE WARFARE CENTER
C        DAHLGREN, VIRGINIA
C     REVISED ... NOV 1991
C-----------------------------------------------------------------------
C     .. Scalar Arguments ..
      DOUBLE PRECISION a,b,w,w1,x,y
      INTEGER ierr
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION a0,b0,eps,lambda,t,x0,y0,z
      INTEGER ierr1,ind,n
C     ..
C     .. External Functions ..
      DOUBLE PRECISION apser,basym,bfrac,bpser,bup,fpser,spmpar
      EXTERNAL apser,basym,bfrac,bpser,bup,fpser,spmpar
C     ..
C     .. External Subroutines ..
      EXTERNAL bgrat
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC abs,dmax1,dmin1
C     ..
C     .. Executable Statements ..
C-----------------------------------------------------------------------
C
C     ****** EPS IS A MACHINE DEPENDENT CONSTANT. EPS IS THE SMALLEST
C            FLOATING POINT NUMBER FOR WHICH 1.0 + EPS .GT. 1.0
C
      eps = spmpar(1)
C
C-----------------------------------------------------------------------
      w = 0.0D0
      w1 = 0.0D0
      IF (a.LT.0.0D0 .OR. b.LT.0.0D0) GO TO 270
      IF (a.EQ.0.0D0 .AND. b.EQ.0.0D0) GO TO 280
      IF (x.LT.0.0D0 .OR. x.GT.1.0D0) GO TO 290
      IF (y.LT.0.0D0 .OR. y.GT.1.0D0) GO TO 300
      z = ((x+y)-0.5D0) - 0.5D0
      IF (abs(z).GT.3.0D0*eps) GO TO 310
C
      ierr = 0
      IF (x.EQ.0.0D0) GO TO 210
      IF (y.EQ.0.0D0) GO TO 230
      IF (a.EQ.0.0D0) GO TO 240
      IF (b.EQ.0.0D0) GO TO 220
C
      eps = dmax1(eps,1.D-15)
      IF (dmax1(a,b).LT.1.D-3*eps) GO TO 260
C
      ind = 0
      a0 = a
      b0 = b
      x0 = x
      y0 = y
      IF (dmin1(a0,b0).GT.1.0D0) GO TO 40
C
C             PROCEDURE FOR A0 .LE. 1 OR B0 .LE. 1
C
      IF (x.LE.0.5D0) GO TO 10
      ind = 1
      a0 = b
      b0 = a
      x0 = y
      y0 = x
C
   10 IF (b0.LT.dmin1(eps,eps*a0)) GO TO 90
      IF (a0.LT.dmin1(eps,eps*b0) .AND. b0*x0.LE.1.0D0) GO TO 100
      IF (dmax1(a0,b0).GT.1.0D0) GO TO 20
      IF (a0.GE.dmin1(0.2D0,b0)) GO TO 110
      IF (x0**a0.LE.0.9D0) GO TO 110
      IF (x0.GE.0.3D0) GO TO 120
      n = 20
      GO TO 140
C
   20 IF (b0.LE.1.0D0) GO TO 110
      IF (x0.GE.0.3D0) GO TO 120
      IF (x0.GE.0.1D0) GO TO 30
      IF ((x0*b0)**a0.LE.0.7D0) GO TO 110
   30 IF (b0.GT.15.0D0) GO TO 150
      n = 20
      GO TO 140
C
C             PROCEDURE FOR A0 .GT. 1 AND B0 .GT. 1
C
   40 IF (a.GT.b) GO TO 50
      lambda = a - (a+b)*x
      GO TO 60

   50 lambda = (a+b)*y - b
   60 IF (lambda.GE.0.0D0) GO TO 70
      ind = 1
      a0 = b
      b0 = a
      x0 = y
      y0 = x
      lambda = abs(lambda)
C
   70 IF (b0.LT.40.0D0 .AND. b0*x0.LE.0.7D0) GO TO 110
      IF (b0.LT.40.0D0) GO TO 160
      IF (a0.GT.b0) GO TO 80
      IF (a0.LE.100.0D0) GO TO 130
      IF (lambda.GT.0.03D0*a0) GO TO 130
      GO TO 200

   80 IF (b0.LE.100.0D0) GO TO 130
      IF (lambda.GT.0.03D0*b0) GO TO 130
      GO TO 200
C
C            EVALUATION OF THE APPROPRIATE ALGORITHM
C
   90 w = fpser(a0,b0,x0,eps)
      w1 = 0.5D0 + (0.5D0-w)
      GO TO 250
C
  100 w1 = apser(a0,b0,x0,eps)
      w = 0.5D0 + (0.5D0-w1)
      GO TO 250
C
  110 w = bpser(a0,b0,x0,eps)
      w1 = 0.5D0 + (0.5D0-w)
      GO TO 250
C
  120 w1 = bpser(b0,a0,y0,eps)
      w = 0.5D0 + (0.5D0-w1)
      GO TO 250
C
  130 w = bfrac(a0,b0,x0,y0,lambda,15.0D0*eps)
      w1 = 0.5D0 + (0.5D0-w)
      GO TO 250
C
  140 w1 = bup(b0,a0,y0,x0,n,eps)
      b0 = b0 + n
  150 CALL bgrat(b0,a0,y0,x0,w1,15.0D0*eps,ierr1)
      w = 0.5D0 + (0.5D0-w1)
      GO TO 250
C
  160 n = b0
      b0 = b0 - n
      IF (b0.NE.0.0D0) GO TO 170
      n = n - 1
      b0 = 1.0D0
  170 w = bup(b0,a0,y0,x0,n,eps)
      IF (x0.GT.0.7D0) GO TO 180
      w = w + bpser(a0,b0,x0,eps)
      w1 = 0.5D0 + (0.5D0-w)
      GO TO 250
C
  180 IF (a0.GT.15.0D0) GO TO 190
      n = 20
      w = w + bup(a0,b0,x0,y0,n,eps)
      a0 = a0 + n
  190 CALL bgrat(a0,b0,x0,y0,w,15.0D0*eps,ierr1)
      w1 = 0.5D0 + (0.5D0-w)
      GO TO 250
C
  200 w = basym(a0,b0,lambda,100.0D0*eps)
      w1 = 0.5D0 + (0.5D0-w)
      GO TO 250
C
C               TERMINATION OF THE PROCEDURE
C
  210 IF (a.EQ.0.0D0) GO TO 320
  220 w = 0.0D0
      w1 = 1.0D0
      RETURN
C
  230 IF (b.EQ.0.0D0) GO TO 330
  240 w = 1.0D0
      w1 = 0.0D0
      RETURN
C
  250 IF (ind.EQ.0) RETURN
      t = w
      w = w1
      w1 = t
      RETURN
C
C           PROCEDURE FOR A AND B .LT. 1.E-3*EPS
C
  260 w = b/ (a+b)
      w1 = a/ (a+b)
      RETURN
C
C                       ERROR RETURN
C
  270 ierr = 1
      RETURN

  280 ierr = 2
      RETURN

  290 ierr = 3
      RETURN

  300 ierr = 4
      RETURN

  310 ierr = 5
      RETURN

  320 ierr = 6
      RETURN

  330 ierr = 7
      RETURN

      END