1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
SUBROUTINE bratio(a,b,x,y,w,w1,ierr)
C-----------------------------------------------------------------------
C
C EVALUATION OF THE INCOMPLETE BETA FUNCTION IX(A,B)
C
C --------------------
C
C IT IS ASSUMED THAT A AND B ARE NONNEGATIVE, AND THAT X .LE. 1
C AND Y = 1 - X. BRATIO ASSIGNS W AND W1 THE VALUES
C
C W = IX(A,B)
C W1 = 1 - IX(A,B)
C
C IERR IS A VARIABLE THAT REPORTS THE STATUS OF THE RESULTS.
C IF NO INPUT ERRORS ARE DETECTED THEN IERR IS SET TO 0 AND
C W AND W1 ARE COMPUTED. OTHERWISE, IF AN ERROR IS DETECTED,
C THEN W AND W1 ARE ASSIGNED THE VALUE 0 AND IERR IS SET TO
C ONE OF THE FOLLOWING VALUES ...
C
C IERR = 1 IF A OR B IS NEGATIVE
C IERR = 2 IF A = B = 0
C IERR = 3 IF X .LT. 0 OR X .GT. 1
C IERR = 4 IF Y .LT. 0 OR Y .GT. 1
C IERR = 5 IF X + Y .NE. 1
C IERR = 6 IF X = A = 0
C IERR = 7 IF Y = B = 0
C
C--------------------
C WRITTEN BY ALFRED H. MORRIS, JR.
C NAVAL SURFACE WARFARE CENTER
C DAHLGREN, VIRGINIA
C REVISED ... NOV 1991
C-----------------------------------------------------------------------
C .. Scalar Arguments ..
DOUBLE PRECISION a,b,w,w1,x,y
INTEGER ierr
C ..
C .. Local Scalars ..
DOUBLE PRECISION a0,b0,eps,lambda,t,x0,y0,z
INTEGER ierr1,ind,n
C ..
C .. External Functions ..
DOUBLE PRECISION apser,basym,bfrac,bpser,bup,fpser,spmpar
EXTERNAL apser,basym,bfrac,bpser,bup,fpser,spmpar
C ..
C .. External Subroutines ..
EXTERNAL bgrat
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,dmax1,dmin1
C ..
C .. Executable Statements ..
C-----------------------------------------------------------------------
C
C ****** EPS IS A MACHINE DEPENDENT CONSTANT. EPS IS THE SMALLEST
C FLOATING POINT NUMBER FOR WHICH 1.0 + EPS .GT. 1.0
C
eps = spmpar(1)
C
C-----------------------------------------------------------------------
w = 0.0D0
w1 = 0.0D0
IF (a.LT.0.0D0 .OR. b.LT.0.0D0) GO TO 270
IF (a.EQ.0.0D0 .AND. b.EQ.0.0D0) GO TO 280
IF (x.LT.0.0D0 .OR. x.GT.1.0D0) GO TO 290
IF (y.LT.0.0D0 .OR. y.GT.1.0D0) GO TO 300
z = ((x+y)-0.5D0) - 0.5D0
IF (abs(z).GT.3.0D0*eps) GO TO 310
C
ierr = 0
IF (x.EQ.0.0D0) GO TO 210
IF (y.EQ.0.0D0) GO TO 230
IF (a.EQ.0.0D0) GO TO 240
IF (b.EQ.0.0D0) GO TO 220
C
eps = dmax1(eps,1.D-15)
IF (dmax1(a,b).LT.1.D-3*eps) GO TO 260
C
ind = 0
a0 = a
b0 = b
x0 = x
y0 = y
IF (dmin1(a0,b0).GT.1.0D0) GO TO 40
C
C PROCEDURE FOR A0 .LE. 1 OR B0 .LE. 1
C
IF (x.LE.0.5D0) GO TO 10
ind = 1
a0 = b
b0 = a
x0 = y
y0 = x
C
10 IF (b0.LT.dmin1(eps,eps*a0)) GO TO 90
IF (a0.LT.dmin1(eps,eps*b0) .AND. b0*x0.LE.1.0D0) GO TO 100
IF (dmax1(a0,b0).GT.1.0D0) GO TO 20
IF (a0.GE.dmin1(0.2D0,b0)) GO TO 110
IF (x0**a0.LE.0.9D0) GO TO 110
IF (x0.GE.0.3D0) GO TO 120
n = 20
GO TO 140
C
20 IF (b0.LE.1.0D0) GO TO 110
IF (x0.GE.0.3D0) GO TO 120
IF (x0.GE.0.1D0) GO TO 30
IF ((x0*b0)**a0.LE.0.7D0) GO TO 110
30 IF (b0.GT.15.0D0) GO TO 150
n = 20
GO TO 140
C
C PROCEDURE FOR A0 .GT. 1 AND B0 .GT. 1
C
40 IF (a.GT.b) GO TO 50
lambda = a - (a+b)*x
GO TO 60
50 lambda = (a+b)*y - b
60 IF (lambda.GE.0.0D0) GO TO 70
ind = 1
a0 = b
b0 = a
x0 = y
y0 = x
lambda = abs(lambda)
C
70 IF (b0.LT.40.0D0 .AND. b0*x0.LE.0.7D0) GO TO 110
IF (b0.LT.40.0D0) GO TO 160
IF (a0.GT.b0) GO TO 80
IF (a0.LE.100.0D0) GO TO 130
IF (lambda.GT.0.03D0*a0) GO TO 130
GO TO 200
80 IF (b0.LE.100.0D0) GO TO 130
IF (lambda.GT.0.03D0*b0) GO TO 130
GO TO 200
C
C EVALUATION OF THE APPROPRIATE ALGORITHM
C
90 w = fpser(a0,b0,x0,eps)
w1 = 0.5D0 + (0.5D0-w)
GO TO 250
C
100 w1 = apser(a0,b0,x0,eps)
w = 0.5D0 + (0.5D0-w1)
GO TO 250
C
110 w = bpser(a0,b0,x0,eps)
w1 = 0.5D0 + (0.5D0-w)
GO TO 250
C
120 w1 = bpser(b0,a0,y0,eps)
w = 0.5D0 + (0.5D0-w1)
GO TO 250
C
130 w = bfrac(a0,b0,x0,y0,lambda,15.0D0*eps)
w1 = 0.5D0 + (0.5D0-w)
GO TO 250
C
140 w1 = bup(b0,a0,y0,x0,n,eps)
b0 = b0 + n
150 CALL bgrat(b0,a0,y0,x0,w1,15.0D0*eps,ierr1)
w = 0.5D0 + (0.5D0-w1)
GO TO 250
C
160 n = b0
b0 = b0 - n
IF (b0.NE.0.0D0) GO TO 170
n = n - 1
b0 = 1.0D0
170 w = bup(b0,a0,y0,x0,n,eps)
IF (x0.GT.0.7D0) GO TO 180
w = w + bpser(a0,b0,x0,eps)
w1 = 0.5D0 + (0.5D0-w)
GO TO 250
C
180 IF (a0.GT.15.0D0) GO TO 190
n = 20
w = w + bup(a0,b0,x0,y0,n,eps)
a0 = a0 + n
190 CALL bgrat(a0,b0,x0,y0,w,15.0D0*eps,ierr1)
w1 = 0.5D0 + (0.5D0-w)
GO TO 250
C
200 w = basym(a0,b0,lambda,100.0D0*eps)
w1 = 0.5D0 + (0.5D0-w)
GO TO 250
C
C TERMINATION OF THE PROCEDURE
C
210 IF (a.EQ.0.0D0) GO TO 320
220 w = 0.0D0
w1 = 1.0D0
RETURN
C
230 IF (b.EQ.0.0D0) GO TO 330
240 w = 1.0D0
w1 = 0.0D0
RETURN
C
250 IF (ind.EQ.0) RETURN
t = w
w = w1
w1 = t
RETURN
C
C PROCEDURE FOR A AND B .LT. 1.E-3*EPS
C
260 w = b/ (a+b)
w1 = a/ (a+b)
RETURN
C
C ERROR RETURN
C
270 ierr = 1
RETURN
280 ierr = 2
RETURN
290 ierr = 3
RETURN
300 ierr = 4
RETURN
310 ierr = 5
RETURN
320 ierr = 6
RETURN
330 ierr = 7
RETURN
END
|