1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
SUBROUTINE dinvr(status,x,fx,qleft,qhi)
C**********************************************************************
C
C SUBROUTINE DINVR(STATUS, X, FX, QLEFT, QHI)
C Double precision
C bounds the zero of the function and invokes zror
C Reverse Communication
C
C
C Function
C
C
C Bounds the function and invokes ZROR to perform the zero
C finding. STINVR must have been called before this routine
C in order to set its parameters.
C
C
C Arguments
C
C
C STATUS <--> At the beginning of a zero finding problem, STATUS
C should be set to 0 and INVR invoked. (The value
C of parameters other than X will be ignored on this cal
C
C When INVR needs the function evaluated, it will set
C STATUS to 1 and return. The value of the function
C should be set in FX and INVR again called without
C changing any of its other parameters.
C
C When INVR has finished without error, it will return
C with STATUS 0. In that case X is approximately a root
C of F(X).
C
C If INVR cannot bound the function, it returns status
C -1 and sets QLEFT and QHI.
C INTEGER STATUS
C
C X <-- The value of X at which F(X) is to be evaluated.
C DOUBLE PRECISION X
C
C FX --> The value of F(X) calculated when INVR returns with
C STATUS = 1.
C DOUBLE PRECISION FX
C
C QLEFT <-- Defined only if QMFINV returns .FALSE. In that
C case it is .TRUE. If the stepping search terminated
C unsucessfully at SMALL. If it is .FALSE. the search
C terminated unsucessfully at BIG.
C QLEFT is LOGICAL
C
C QHI <-- Defined only if QMFINV returns .FALSE. In that
C case it is .TRUE. if F(X) .GT. Y at the termination
C of the search and .FALSE. if F(X) .LT. Y at the
C termination of the search.
C QHI is LOGICAL
C
C**********************************************************************
C Modified by S. Steer INRIA 1998,to replace ASSIGN instruction by
c Computed GOTO
C**********************************************************************
include '../stack.h'
C .. Scalar Arguments ..
DOUBLE PRECISION fx,x,zabsst,zabsto,zbig,zrelst,zrelto,zsmall,
+ zstpmu
INTEGER status
LOGICAL qhi,qleft
C ..
C .. Local Scalars ..
DOUBLE PRECISION absstp,abstol,big,fbig,fsmall,relstp,reltol,
+ small,step,stpmul,xhi,xlb,xlo,xsave,xub,yy,zx,zy,
+ zz
INTEGER i99999
LOGICAL qbdd,qcond,qdum1,qdum2,qincr,qlim,qok,qup
C ..
C .. External Subroutines ..
EXTERNAL dstzr,dzror
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,max,min
C ..
C .. Statement Functions ..
LOGICAL qxmon
C ..
C .. Save statement ..
SAVE
C ..
C .. Statement Function definitions ..
qxmon(zx,zy,zz) = zx .LE. zy .AND. zy .LE. zz
C ..
C .. Executable Statements ..
IF (status.GT.0) GO TO 310
qcond = .NOT. qxmon(small,x,big)
IF (qcond) then
call basout(io,wte,' SMALL, X, BIG not monotone in INVR')
status = -100
return
endif
xsave = x
C
C See that SMALL and BIG bound the zero and set QINCR
C
x = small
C GET-FUNCTION-VALUE
c ASSIGN 10 TO i99999
i99999=1
GO TO 300
10 fsmall = fx
x = big
C GET-FUNCTION-VALUE
c ASSIGN 20 TO i99999
i99999=2
GO TO 300
20 fbig = fx
qincr = fbig .GT. fsmall
IF (.NOT. (qincr)) GO TO 50
IF (fsmall.LE.0.0D0) GO TO 30
status = -1
qleft = .TRUE.
qhi = .TRUE.
RETURN
30 IF (fbig.GE.0.0D0) GO TO 40
status = -1
qleft = .FALSE.
qhi = .FALSE.
RETURN
40 GO TO 80
50 IF (fsmall.GE.0.0D0) GO TO 60
status = -1
qleft = .TRUE.
qhi = .FALSE.
RETURN
60 IF (fbig.LE.0.0D0) GO TO 70
status = -1
qleft = .FALSE.
qhi = .TRUE.
RETURN
70 CONTINUE
80 x = xsave
step = max(absstp,relstp*abs(x))
C YY = F(X) - Y
C GET-FUNCTION-VALUE
c ASSIGN 90 TO i99999
i99999=3
GO TO 300
90 yy = fx
IF (.NOT. (yy.EQ.0.0D0)) GO TO 100
status = 0
qok = .TRUE.
RETURN
100 qup = (qincr .AND. (yy.LT.0.0D0)) .OR.
+ (.NOT.qincr .AND. (yy.GT.0.0D0))
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C HANDLE CASE IN WHICH WE MUST STEP HIGHER
C
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
IF (.NOT. (qup)) GO TO 170
xlb = xsave
xub = min(xlb+step,big)
GO TO 120
110 IF (qcond) GO TO 150
C YY = F(XUB) - Y
120 x = xub
C GET-FUNCTION-VALUE
c ASSIGN 130 TO i99999
i99999=4
GO TO 300
130 yy = fx
qbdd = (qincr .AND. (yy.GE.0.0D0)) .OR.
+ (.NOT.qincr .AND. (yy.LE.0.0D0))
qlim = xub .GE. big
qcond = qbdd .OR. qlim
IF (qcond) GO TO 140
step = stpmul*step
xlb = xub
xub = min(xlb+step,big)
140 GO TO 110
150 IF (.NOT. (qlim.AND..NOT.qbdd)) GO TO 160
status = -1
qleft = .FALSE.
qhi = .NOT. qincr
x = big
RETURN
160 GO TO 240
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C HANDLE CASE IN WHICH WE MUST STEP LOWER
C
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
170 xub = xsave
xlb = max(xub-step,small)
GO TO 190
180 IF (qcond) GO TO 220
C YY = F(XLB) - Y
190 x = xlb
C GET-FUNCTION-VALUE
c ASSIGN 200 TO i99999
i99999=5
GO TO 300
200 yy = fx
qbdd = (qincr .AND. (yy.LE.0.0D0)) .OR.
+ (.NOT.qincr .AND. (yy.GE.0.0D0))
qlim = xlb .LE. small
qcond = qbdd .OR. qlim
IF (qcond) GO TO 210
step = stpmul*step
xub = xlb
xlb = max(xub-step,small)
210 GO TO 180
220 IF (.NOT. (qlim.AND..NOT.qbdd)) GO TO 230
status = -1
qleft = .TRUE.
qhi = qincr
x = small
RETURN
230 CONTINUE
240 CALL dstzr(xlb,xub,abstol,reltol)
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C IF WE REACH HERE, XLB AND XUB BOUND THE ZERO OF F.
C
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
status = 0
GO TO 260
250 IF (.NOT. (status.EQ.1)) GO TO 290
260 CALL dzror(status,x,fx,xlo,xhi,qdum1,qdum2)
IF (.NOT. (status.EQ.1)) GO TO 280
C GET-FUNCTION-VALUE
c ASSIGN 270 TO i99999
i99999=6
GO TO 300
270 CONTINUE
280 GO TO 250
290 x = xlo
status = 0
RETURN
ENTRY dstinv(zsmall,zbig,zabsst,zrelst,zstpmu,zabsto,zrelto)
C**********************************************************************
C
C SUBROUTINE DSTINV( SMALL, BIG, ABSSTP, RELSTP, STPMUL,
C + ABSTOL, RELTOL )
C Double Precision - SeT INverse finder - Reverse Communication
C
C
C Function
C
C
C Concise Description - Given a monotone function F finds X
C such that F(X) = Y. Uses Reverse communication -- see invr.
C This routine sets quantities needed by INVR.
C
C More Precise Description of INVR -
C
C F must be a monotone function, the results of QMFINV are
C otherwise undefined. QINCR must be .TRUE. if F is non-
C decreasing and .FALSE. if F is non-increasing.
C
C QMFINV will return .TRUE. if and only if F(SMALL) and
C F(BIG) bracket Y, i. e.,
C QINCR is .TRUE. and F(SMALL).LE.Y.LE.F(BIG) or
C QINCR is .FALSE. and F(BIG).LE.Y.LE.F(SMALL)
C
C if QMFINV returns .TRUE., then the X returned satisfies
C the following condition. let
C TOL(X) = MAX(ABSTOL,RELTOL*ABS(X))
C then if QINCR is .TRUE.,
C F(X-TOL(X)) .LE. Y .LE. F(X+TOL(X))
C and if QINCR is .FALSE.
C F(X-TOL(X)) .GE. Y .GE. F(X+TOL(X))
C
C
C Arguments
C
C
C SMALL --> The left endpoint of the interval to be
C searched for a solution.
C SMALL is DOUBLE PRECISION
C
C BIG --> The right endpoint of the interval to be
C searched for a solution.
C BIG is DOUBLE PRECISION
C
C ABSSTP, RELSTP --> The initial step size in the search
C is MAX(ABSSTP,RELSTP*ABS(X)). See algorithm.
C ABSSTP is DOUBLE PRECISION
C RELSTP is DOUBLE PRECISION
C
C STPMUL --> When a step doesn't bound the zero, the step
C size is multiplied by STPMUL and another step
C taken. A popular value is 2.0
C DOUBLE PRECISION STPMUL
C
C ABSTOL, RELTOL --> Two numbers that determine the accuracy
C of the solution. See function for a precise definition.
C ABSTOL is DOUBLE PRECISION
C RELTOL is DOUBLE PRECISION
C
C
C Method
C
C
C Compares F(X) with Y for the input value of X then uses QINCR
C to determine whether to step left or right to bound the
C desired x. the initial step size is
C MAX(ABSSTP,RELSTP*ABS(S)) for the input value of X.
C Iteratively steps right or left until it bounds X.
C At each step which doesn't bound X, the step size is doubled.
C The routine is careful never to step beyond SMALL or BIG. If
C it hasn't bounded X at SMALL or BIG, QMFINV returns .FALSE.
C after setting QLEFT and QHI.
C
C If X is successfully bounded then Algorithm R of the paper
C 'Two Efficient Algorithms with Guaranteed Convergence for
C Finding a Zero of a Function' by J. C. P. Bus and
C T. J. Dekker in ACM Transactions on Mathematical
C Software, Volume 1, No. 4 page 330 (DEC. '75) is employed
C to find the zero of the function F(X)-Y. This is routine
C QRZERO.
C
C**********************************************************************
small = zsmall
big = zbig
absstp = zabsst
relstp = zrelst
stpmul = zstpmu
abstol = zabsto
reltol = zrelto
RETURN
C(jpc) STOP '*** EXECUTION FLOWING INTO FLECS PROCEDURES ***'
C TO GET-FUNCTION-VALUE
300 status = 1
RETURN
310 CONTINUE
goto(10,20,90,130,200,270) i99999
c GO TO i99999
END
|