1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
subroutine fexcd(jflag,nc,nd,t,y,ydp)
c input variables jflag, nc, nd, t, y
c jflag=0 or 1
c nc = # of continuous states yc
c nd = # of discrete states yd
c t = time
c y = state variable = [yc; yd]
c output variable = ydp
c
c iflag=0 >> external routine must
c load ydp(1:nc) with ydot=d/dt ( yc(t) )
c derivative of continuous state
c iflag=1 >> external routine must
c load ydp(1:nd) with yplus= yd(t+)
c update of discrete state
c here y=[yc;yd] has dimension nc+nd=3+2
c
c Example:
c 1/ call this fexcd:
c y0c=[1;2;3]; y0d=[1;-1]; nd=2; t0=0; t=1:10;
c y=odedc([y0c;y0d],nd,[5,0],t0,t,'fexcd')
c
c 2/ using dynamic link:
c link('fexcd.o','fexcd')
c y0c=[1;2;3]; y0d=[1;-1]; nd=2; t0=0; t=1:10;
c y=odedc([y0c;y0d],nd,[5,0],t0,t,'fexcd')
c
c 3/ passing a parameter to fexcd routine:
c y=odedc([y0c;y0d],nd,[5,0],t0,t,list('fexcd',param))
c param can be retrieved in fexcd by:
c param(1)=y(nc+nd+1) , param(2)=y(nc+nd+2) etc
c with this calling sequence y is a nc+nd+np vector
c where np=dimension of scilab variable param
c
c Copyright INRIA
double precision t, y, ydp
dimension y(*), ydp(*)
if(jflag.eq.0) then
ydp(1) = y(4)
ydp(2) = y(5)
ydp(3) = 0.d0
elseif(jflag.eq.1) then
ydp(1)=-y(4)
ydp(2)=-y(5)
endif
return
end
c The odedc example in the manual:
subroutine fcd(jflag,nc,nd,t,x,xdp)
c set dimensions of u,v,y
double precision u(1),v(1),y(1)
c
double precision t,x(*),xdp(*)
if (jflag.eq.0) then
c fc(t,xc,e(t)-hd(t,xd)
c u=e(t)-hd(t,xd)
call finput(t,v)
call hd(t,x(nc+1),u)
u(1)=v(1)-u(1)
c u(2)=v(2)-u(2) ....
call fc(t,x,u,xdp)
elseif(jflag.eq.1) then
call hc(t,x,y)
call fd(x(nc+1),y,xdp)
endif
return
end
subroutine fc(t,xc,u,xdot)
double precision t,xc(*),xdot(*),u(*)
c A=[-10,2,3;4,-10,6;7,8,-10];B=[1;1;1]
xdot(1)=-10*xc(1)+2*xc(2)+3*xc(3)+u(1)
xdot(2)=4*xc(1)-10*xc(2)+6*xc(3)+u(1)
xdot(3)=7*xc(1)+8*xc(2)-10*xc(3)+u(1)
return
end
subroutine hc(t,x,y)
double precision t,x(*),y(*)
y(1)=x(1)+x(2)+x(3)
return
end
subroutine fd(xd,y,xp)
c Ad=[0.5,1;0,0.05] Bd=[1;1]
double precision xd(*),y(*),xp(*)
xp(1)=0.5D0*xd(1)+xd(2)+y(1)
xp(2)=0*xd(1)+0.05D0*xd(2)+y(1)
return
end
subroutine hd(t,xd,u)
double precision t,xd(*),u(*)
u(1)=xd(1)+xd(2)
return
end
c The odedc example in the manual:
c It is assumed here that scilab variables
c A,B,C and Ad,Bd,Cd exist.
c
subroutine fcd1(jflag,nc,nd,t,x,xdp)
c
c iflag=0 --> returns in xcd(1:nc) dot(xc=x(1:nc))
c iflag=1 --> returns in xcd(1:nd) update(xd=x(nc+1:nc+nd))
c
c set here dimensions of u,v,y
double precision u(1),v(1),y(1)
c
double precision t,x(*),xdp(*)
if (jflag.eq.0) then
c xcd=fc1(t,xc,u)
c u=e(t)-hd1(t,xd)
call finput(t,v)
call hd1(t,x(nc+1),u)
u(1)=v(1)-u(1)
c u(2)=v(2)-u(2) ....
call fc1(t,x,u,xdp)
elseif(jflag.eq.1) then
c xcd=fd1(xd,y) xd=[x(nc+1),x(nc+2),...]
c y=hc1(t,xc)
call hc1(t,x,y)
call fd1(x(nc+1),y,xdp)
endif
return
end
subroutine fc1(t,xc,u,xdot)
c xdot=A*xc+B*u
c A and B real scilab matrices
double precision t,xc(*),xdot(*),u(*)
include '../stack.h'
call matptr('A'//char(0),m,n,la)
c call dset(m,0.0d0,xdot,1)
c call dgemm('n','n',m,1,m,1.0d0,stk(la),m,xc,m,1.0d0,xdot,m)
call brdmmul(stk(la),m,xc,m,xdot,m,m,m,1)
call matptr('B'//char(0),m,nb,lb)
call dgemm('n','n',m,1,nb,1.0d0,stk(lb),m,u,1,1.0d0,xdot,m)
end
subroutine hc1(t,x,y)
double precision t,x(*),y(*)
include '../stack.h'
c y=C*x
call matptr('C'//char(0),m,n,lc)
call brdmmul(stk(lc),m,x,m,y,m,m,n,1)
end
subroutine fd1(xd,y,xp)
c xp=Ad*xd + Bd*y
double precision xd(*),y(*),xp(*)
include '../stack.h'
call matptr('Ad'//char(0),m,n,la)
call brdmmul(stk(la),m,xd,m,xp,m,m,m,1)
call matptr('Bd'//char(0),m,nb,lb)
call dgemm('n','n',m,1,nb,1.0d0,stk(lb),m,y,1,1.0d0,xp,m)
end
subroutine hd1(t,xd,u)
double precision t,xd(*),u(*)
c u=Cd*xd
include '../stack.h'
c y=C*x
call matptr('Cd'//char(0),m,n,lc)
call brdmmul(stk(lc),m,xd,m,u,m,m,n,1)
end
subroutine finput(t,v)
double precision t,v(1)
v(1)=sin(3*t)
end
c dot(x)=A x + B u with u= (0,1) step function
subroutine phis(jflag,nc,nd,t,x,xdp)
c
c iflag=0 --> returns in xcd(1:nc) dot(xc=x(1:nc))
c iflag=1 --> returns in xcd(1:nd) update(xd=x(nc+1:nc+nd))
c
double precision t,x(*),xdp(*)
if (jflag.eq.0) then
c dot(x)=A*x+B*xd
call sbrc(t,x,xdp)
elseif(jflag.eq.1) then
c xd=1-xd
xdp(1)=1.d0-x(nc+1)
endif
end
c dot(x)=A x + B u with u= piecewise triangular function
subroutine phit(jflag,nc,nd,t,x,xdp)
c
c iflag=0 --> returns in xcd(1:nc) dot(xc=x(1:nc))
c iflag=1 --> returns in xcd(1:nd) update(xd=x(nc+1:nc+nd))
c
double precision t,x(*),xdp(*)
if (jflag.eq.0) then
c dot(x1c)=A*x1c+B*x2c
c dot(x2c)=xd
call sbrc(t,x,xdp)
xdp(nc)=x(nc+1)
elseif(jflag.eq.1) then
c xd=-xd
xdp(1)=-x(nc+1)
endif
end
subroutine sbrc(t,x,xdot)
c xdot=A*x1+B*x2
c A and B real scilab matrices
double precision t,x(*),xdot(*)
include '../stack.h'
call matptr('A'//char(0),m,n,la)
call brdmmul(stk(la),m,x,m,xdot,m,m,m,1)
call matptr('B'//char(0),m,nb,lb)
call dgemm('n','n',m,1,nb,1.0d0,stk(lb),m,x(m+1),1,1.0d0,xdot,m)
end
subroutine brdmmul(a,na,b,nb,c,nc,l,m,n)
c Copyright INRIA
double precision a(*),b(*),c(*)
double precision ddot
integer na,nb,nc,l,m,n
integer i,j,ib,ic
c
ib=1
ic=0
do 30 j=1,n
do 20 i=1,l
c(ic+i)=ddot(m,a(i),na,b(ib),1)
20 continue
ic=ic+nc
ib=ib+nb
30 continue
return
end
|