1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
c Examples of default external functions for schur
c [..]=schur(A,"external")
c Can be used as template functions
LOGICAL FUNCTION SB02MV( REIG, IEIG )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To select the stable eigenvalues
C
C ARGUMENTS
C
C Input/Output Parameters
C
C REIG (input) DOUBLE PRECISION
C The real part of the current eigenvalue considered.
C
C IEIG (input) DOUBLE PRECISION
C The imaginary part of the current eigenvalue considered.
C
C METHOD
C
C The function value SB02MV is set to .TRUE. for a stable eigenvalue
C and to .FALSE., otherwise.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C
C REVISIONS
C
C -
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION IEIG, REIG
C .. Executable Statements ..
C
SB02MV = REIG.LT.ZERO
C
RETURN
C *** Last line of SB02MV ***
END
LOGICAL FUNCTION SB02MW( REIG, IEIG )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To select the stable eigenvalues for discrete-time
C
C ARGUMENTS
C
C Input/Output Parameters
C
C REIG (input) DOUBLE PRECISION
C The real part of the current eigenvalue considered.
C
C IEIG (input) DOUBLE PRECISION
C The imaginary part of the current eigenvalue considered.
C
C METHOD
C
C The function value SB02MW is set to .TRUE. for a stable
C eigenvalue (i.e., with modulus less than one) and to .FALSE.,
C otherwise.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C
C REVISIONS
C
C -
C
C .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION IEIG, REIG
C .. External Functions ..
DOUBLE PRECISION DLAPY2
EXTERNAL DLAPY2
C .. Executable Statements ..
C
SB02MW = DLAPY2( REIG, IEIG ).LT.ONE
C
RETURN
C *** Last line of SB02MW ***
END
LOGICAL FUNCTION SB02OW( ALPHAR, ALPHAI, BETA )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To select the stable generalized eigenvalues for continuous-time
C
C ARGUMENTS
C
C Input/Output Parameters
C
C ALPHAR (input) DOUBLE PRECISION
C The real part of the numerator of the current eigenvalue
C considered.
C
C ALPHAI (input) DOUBLE PRECISION
C The imaginary part of the numerator of the current
C eigenvalue considered.
C
C BETA (input) DOUBLE PRECISION
C The (real) denominator of the current eigenvalue
C considered. It is assumed that BETA <> 0 (regular case).
C
C METHOD
C
C The function value SB02OW is set to .TRUE. for a stable eigenvalue
C and to .FALSE., otherwise.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Supersedes Release 2.0 routine SB02CW by P. Van Dooren, Philips
C Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C -
C
C ******************************************************************
C
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION ALPHAR, ALPHAI, BETA
C .. Executable Statements ..
C
SB02OW = (( ALPHAR.LT.ZERO .AND. BETA.GT.ZERO ) .OR.
$ ( ALPHAR.GT.ZERO .AND. BETA.LT.ZERO )) .AND.
$ abs(BETA).GT. abs(ALPHAR)*dlamch('p')
C
RETURN
C *** Last line of SB02OW ***
END
LOGICAL FUNCTION SB02OX( ALPHAR, ALPHAI, BETA )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To select the stable generalized eigenvalues for
C discrete-time
C
C ARGUMENTS
C
C Input/Output Parameters
C
C ALPHAR (input) DOUBLE PRECISION
C The real part of the numerator of the current eigenvalue
C considered.
C
C ALPHAI (input) DOUBLE PRECISION
C The imaginary part of the numerator of the current
C eigenvalue considered.
C
C BETA (input) DOUBLE PRECISION
C The (real) denominator of the current eigenvalue
C considered.
C
C METHOD
C
C The function value SB02OX is set to .TRUE. for a stable eigenvalue
C (i.e., with modulus less than one) and to .FALSE., otherwise.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Supersedes Release 2.0 routine SB02CX by P. Van Dooren, Philips
C Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C -
C
C ******************************************************************
C
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION ALPHAR, ALPHAI, BETA
C .. External Functions ..
DOUBLE PRECISION DLAPY2
EXTERNAL DLAPY2
C .. Intrinsic Functions ..
INTRINSIC ABS
C .. Executable Statements ..
C
SB02OX = DLAPY2( ALPHAR, ALPHAI ).LT.ABS( BETA )
C
RETURN
C *** Last line of SB02OX ***
END
LOGICAL FUNCTION ZB02MV( EIG )
C
C RELEASE 4.0, WGS COPYRIGHT 2001.
C
C PURPOSE
C
C To select the stable eigenvalues in ordering the Schur form
C of a matrix.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C EIG (input) COMPLEX*16
C The current eigenvalue considered.
C
C METHOD
C
C The function value ZB02MV is set to .TRUE. for a stable eigenvalue
C and to .FALSE., otherwise.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Algebraic Riccati equation, closed loop system, continuous-time
C system, optimal regulator, Schur form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
COMPLEX*16 EIG
C .. Intrinsic Functions ..
INTRINSIC DREAL
C .. Executable Statements ..
C
ZB02MV = DREAL(EIG).LT.ZERO
C
RETURN
C *** Last line of ZB02MV ***
END
LOGICAL FUNCTION ZB02MW( EIG )
C
C RELEASE 4.0, WGS COPYRIGHT 2001.
C
C PURPOSE
C
C To select the eigenvalues inside the unit circle in ordering
C the Schur form of a matrix.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C EIG (input) COMPLEX*16
C The current eigenvalue considered.
C
C METHOD
C
C The function value ZB02MW is set to .TRUE. for an eigenvalue which
C is inside the unit circle and to .FALSE., otherwise.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Algebraic Riccati equation, closed loop system, continuous-time
C system, optimal regulator, Schur form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
C .. Scalar Arguments ..
COMPLEX*16 EIG
C .. Intrinsic Functions ..
INTRINSIC ABS
C .. Executable Statements ..
C
ZB02MW = ABS(EIG).LT.ONE
C
RETURN
C *** Last line of ZB02MW ***
END
LOGICAL FUNCTION ZB02OW( ALPHA, BETA )
C
C RELEASE 4.0, WGS COPYRIGHT 2000.
C
C PURPOSE
C
C To select the stable generalized eigenvalues for the
C continuous-time.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C ALPHAR (input) DOUBLE PRECISION
C The real part of the numerator of the current eigenvalue
C considered.
C
C ALPHAI (input) DOUBLE PRECISION
C The imaginary part of the numerator of the current
C eigenvalue considered.
C
C BETA (input) DOUBLE PRECISION
C The (real) denominator of the current eigenvalue
C considered. It is assumed that BETA <> 0 (regular case).
C
C METHOD
C
C The function value ZB02OW is set to .TRUE. for a stable eigenvalue
C and to .FALSE., otherwise.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Algebraic Riccati equation, closed loop system, continuous-time
C system, optimal regulator, Schur form.
C
C ******************************************************************
C
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
COMPLEX*16 ALPHA, BETA
INTRINSIC DREAL
C .. Executable Statements ..
C
if (abs(BETA).ne.ZERO) then
ZB02OW = DREAL(ALPHA/BETA).LT.ZERO
else
ZB02OW = .FALSE.
endif
C
RETURN
C *** Last line of zb02ow ***
END
LOGICAL FUNCTION ZB02OX( ALPHA, BETA )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To select the stable generalized eigenvalues for the
C discrete-time algebraic.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C ALPHAR (input) DOUBLE PRECISION
C The real part of the numerator of the current eigenvalue
C considered.
C
C ALPHAI (input) DOUBLE PRECISION
C The imaginary part of the numerator of the current
C eigenvalue considered.
C
C BETA (input) DOUBLE PRECISION
C The (real) denominator of the current eigenvalue
C considered.
C
C METHOD
C
C The function value ZB02OX is set to .TRUE. for a stable eigenvalue
C (i.e., with modulus less than one) and to .FALSE., otherwise.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Algebraic Riccati equation, closed loop system, continuous-time
C system, optimal regulator, Schur form.
C
C ******************************************************************
C
C .. Scalar Arguments ..
COMPLEX*16 ALPHA, BETA
C .. External Functions ..
C .. Intrinsic Functions ..
INTRINSIC ABS
C .. Executable Statements ..
C
ZB02OX = ABS( ALPHA ).LT.ABS( BETA )
C
RETURN
C *** Last line of ZB02OX ***
END
|