File: cfode.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (116 lines) | stat: -rw-r--r-- 4,304 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
C/MEMBR ADD NAME=CFODE,SSI=0
      subroutine cfode (meth, elco, tesco)
clll. optimize
      integer meth
      integer i, ib, nq, nqm1, nqp1
      double precision elco, tesco
      double precision agamq, fnq, fnqm1, pc, pint, ragq,
     1   rqfac, rq1fac, tsign, xpin
      dimension elco(13,12), tesco(3,12)
c-----------------------------------------------------------------------
c%purpose
c cfode is called by the integrator routine to set coefficients
c needed there.  the coefficients for the current method, as
c given by the value of meth, are set for all orders and saved.
c the maximum order assumed here is 12 if meth = 1 and 5 if meth = 2.
c (a smaller value of the maximum order is also allowed.)
c cfode is called once at the beginning of the problem,
c and is not called again unless and until meth is changed.
c
c%comments
c the elco array contains the basic method coefficients.
c the coefficients el(i), 1 .le. i .le. nq+1, for the method of
c order nq are stored in elco(i,nq).  they are given by a genetrating
c polynomial, i.e.,
c     l(x) = el(1) + el(2)*x + ... + el(nq+1)*x**nq.
c for the implicit adams methods, l(x) is given by
c     dl/dx = (x+1)*(x+2)*...*(x+nq-1)/factorial(nq-1),    l(-1) = 0.
c for the bdf methods, l(x) is given by
c     l(x) = (x+1)*(x+2)* ... *(x+nq)/k,
c where         k = factorial(nq)*(1 + 1/2 + ... + 1/nq).
c
c the tesco array contains test constants used for the
c local error test and the selection of step size and/or order.
c at order nq, tesco(k,nq) is used for the selection of step
c size at order nq - 1 if k = 1, at order nq if k = 2, and at order
c nq + 1 if k = 3.
c!
c-----------------------------------------------------------------------
      dimension pc(12)
c
      go to (100, 200), meth
c
 100  elco(1,1) = 1.0d+0
      elco(2,1) = 1.0d+0
      tesco(1,1) = 0.0d+0
      tesco(2,1) = 2.0d+0
      tesco(1,2) = 1.0d+0
      tesco(3,12) = 0.0d+0
      pc(1) = 1.0d+0
      rqfac = 1.0d+0
      do 140 nq = 2,12
c-----------------------------------------------------------------------
c the pc array will contain the coefficients of the polynomial
c     p(x) = (x+1)*(x+2)*...*(x+nq-1).
c initially, p(x) = 1.
c-----------------------------------------------------------------------
        rq1fac = rqfac
        rqfac = rqfac/dble(nq)
        nqm1 = nq - 1
        fnqm1 = dble(nqm1)
        nqp1 = nq + 1
c form coefficients of p(x)*(x+nq-1). ----------------------------------
        pc(nq) = 0.0d+0
        do 110 ib = 1,nqm1
          i = nqp1 - ib
 110      pc(i) = pc(i-1) + fnqm1*pc(i)
        pc(1) = fnqm1*pc(1)
c compute integral, -1 to 0, of p(x) and x*p(x). -----------------------
        pint = pc(1)
        xpin = pc(1)/2.0d+0
        tsign = 1.0d+0
        do 120 i = 2,nq
          tsign = -tsign
          pint = pint + tsign*pc(i)/dble(i)
 120      xpin = xpin + tsign*pc(i)/dble(i+1)
c store coefficients in elco and tesco. --------------------------------
        elco(1,nq) = pint*rq1fac
        elco(2,nq) = 1.0d+0
        do 130 i = 2,nq
 130      elco(i+1,nq) = rq1fac*pc(i)/dble(i)
        agamq = rqfac*xpin
        ragq = 1.0d+0/agamq
        tesco(2,nq) = ragq
        if (nq .lt. 12) tesco(1,nqp1) = ragq*rqfac/dble(nqp1)
        tesco(3,nqm1) = ragq
 140    continue
      return
c
 200  pc(1) = 1.0d+0
      rq1fac = 1.0d+0
      do 230 nq = 1,5
c-----------------------------------------------------------------------
c the pc array will contain the coefficients of the polynomial
c     p(x) = (x+1)*(x+2)*...*(x+nq).
c initially, p(x) = 1.
c-----------------------------------------------------------------------
        fnq = dble(nq)
        nqp1 = nq + 1
c form coefficients of p(x)*(x+nq). ------------------------------------
        pc(nqp1) = 0.0d+0
        do 210 ib = 1,nq
          i = nq + 2 - ib
 210      pc(i) = pc(i-1) + fnq*pc(i)
        pc(1) = fnq*pc(1)
c store coefficients in elco and tesco. --------------------------------
        do 220 i = 1,nqp1
 220      elco(i,nq) = pc(i)/pc(2)
        elco(2,nq) = 1.0d+0
        tesco(1,nq) = rq1fac
        tesco(2,nq) = dble(nqp1)/elco(1,nq)
        tesco(3,nq) = dble(nq+2)/elco(1,nq)
        rq1fac = rq1fac/fnq
 230    continue
      return
c----------------------- end of subroutine cfode -----------------------
      end