1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
|
SUBROUTINE DCUTET(FUNSUB,NUMFUN,VER,NUMTET,MINPTS,MAXPTS,EPSABS,
+ EPSREL,LENVER,NW,RESTAR,RESULT,ABSERR,NEVAL,
+ IFAIL,WORK,IWORK)
C***BEGIN PROLOGUE DCUTET
C***DATE WRITTEN 900220 (YYMMDD)
C***REVISION DATE 900307 (YYMMDD)
C***CATEGORY NO. H2B2A1/H2B2A2
C***KEYWORDS QUADRATURE, THREE DIMENSIONAL, ADAPTIVE, CUBATURE
C***AUTHORS
C Jarle Berntsen, The Computing Centre,
C University of Bergen, Thormohlens gt. 55,
C N-5008 Bergen, Norway
C Phone.. 47-5-544055
C Email.. jarle@eik.ii.uib.no
C
C Ronald Cools, Dept. of Computer Science,
C Katholieke Universiteit Leuven, Celestijnenlaan 200A,
C B-3030 Heverlee, Belgium
C Phone.. 32-16-201015 (3562)
C Email.. ronald@cs.kuleuven.ac.be
C
C Terje O. Espelid, Department of Informatics,
C University of Bergen, Thormohlens gt. 55,
C N-5008 Bergen, Norway
C Phone.. 47-5-544180
C Email.. terje@eik.ii.uib.no
C
C***PURPOSE To compute the three-dimensional integral over a region
C consisting of NUMTET tetrahedrons.
C***DESCRIPTION
C
C The routine calculates an approximation to a given
C vector of definite integrals
C
C I I I (F ,F ,...,F ) DX(3)DX(2)DX(1),
C 1 2 NUMFUN
C
C where the region of integration is a collection of
C NUMTET tetrahedrons and
C where F = F (X(1),X(2),X(3)), J = 1,2,...,NUMFUN.
C J J
C
C
C A globally adaptive strategy is applied in order to
C compute approximations RESULT(K)
C hopefully satisfying, for each component of I, the
C following claim for accuracy:
C ABS(I(K)-RESULT(K)).LE.MAX(EPSABS,EPSREL*ABS(I(K)))
C
C DCUTET is a driver for the integration routine
C DADTET.
C
C DADTET repeatedly
C subdivides the tetrahedrons with greatest estimated errors
C and estimates the integrals and the
C errors over the new subtetrahedrons
C until the error request
C is met or MAXPTS function evaluations have been used.
C
C A 43 point integration rule
C with all evaluation points inside the tetrahedron
C is applied. The rule has polynomial degree 8.
C
C If the values of the input parameters EPSABS
C or EPSREL are selected great enough,
C an integration rule is applied over each tetrahedron and
C the results are added up to give the approximations
C RESULT(K). No further subdivision
C of the tetrahedrons will then be applied.
C
C When DCUTET computes estimates to a vector of
C integrals, all components of the vector are given
C the same treatment. That is, I(F ) and I(F ) for
C J K
C J not equal to K, are estimated with the same
C subdivision of the region of integration.
C For integrals with enough similarity, we may save
C time by applying DCUTET to all integrands in one call.
C For integrals that varies continuously as functions of
C some parameter, the estimates produced by DCUTET will
C also vary continuously when the same subdivision is
C applied to all components. This will generally not be
C the case when the different components are given
C separate treatment.
C
C On the other hand this feature should be used with
C caution when the different components of the integrals
C require clearly different subdivisions.
C
C ON ENTRY
C
C FUNSUB Externally declared subroutine for computing
C all components of the integrand at the given
C evaluation point.
C It must have parameters (X,NUMFUN,FUNVLS)
C Input parameters:
C X(1) The x-coordinate of the evaluation point.
C X(2) The y-coordinate of the evaluation point.
C X(3) The z-coordinate of the evaluation point.
C NUMFUN Integer that defines the number of
C components of I.
C Output parameter:
C FUNVLS Real array of dimension NUMFUN
C that defines NUMFUN components of the integrand.
C
C NUMFUN Integer.
C Number of components of the integral.
C VER Real array of dimension (3,4,LENVER).
C VER(1,K,L), VER(2,K,L) and VER(3,K,L) are the x, y and z
C coordinates respectively of vertex K in tetrahedron L.
C On entry VER(*,*,L) must contain the vertices of the
C NUMTET user specified tetrahedrons for L = 1,2,...,NUMTET.
C NUMTET Integer.
C The number of tetrahedrons.
C MINPTS Integer.
C Minimum number of function evaluations.
C MAXPTS Integer.
C Maximum number of function evaluations.
C The number of function evaluations over each subregion
C is 43.
C
C MAXPTS >= 43*NUMTET and MAXPTS >= MINPTS
C
C EPSABS Real.
C Requested absolute error.
C EPSREL Real.
C Requested relative error.
C LENVER Integer.
C Defines the length of the array VER.
C
C We let
C MAXSUB denote the maximum allowed number of subregions
C for the given value of MAXPTS.
C MAXSUB = 7*(MAXPTS-43*NUMTET)/(8*43) + NUMTET
C LENVER should be greater or equal to MAXSUB.
C
C NW Integer.
C Defines the length of the working array WORK.
C
C We let
C MAXSUB denote the maximum allowed number of subregions
C for the given values of MAXPTS.
C MAXSUB = 7*(MAXPTS-43*NUMTET)/(8*43) + NUMTET
C NW should then be greater or equal to
C MAXSUB*(2*NUMFUN+1) + MAX(8*6*MDIV,6*NUMTET)*NUMFUN + 1
C where MDIV is the number of tetrahedrons that are divided
C in each subdivision step.
C MDIV is default set internally in DCUTET equal to 1.
C For efficient execution on parallel computers
C with NPROC processors MDIV should be set equal to
C the smallest integer such that MOD(8*MDIV,NPROC) = 0.
C
C RESTAR Integer.
C If RESTAR = 0, this is the first attempt to compute
C the integral.
C If RESTAR = 1,
C then we restart a previous attempt.
C In this case the only parameters for DCUTET that may
C be changed (with respect to the previous call of DCUTET)
C are MINPTS, MAXPTS, EPSABS, EPSREL and RESTAR.
C
C ON RETURN
C
C RESULT Real array of dimension NUMFUN.
C Approximations to all components of the integral.
C ABSERR Real array of dimension NUMFUN.
C Estimates of absolute errors.
C NEVAL Integer.
C Number of function evaluations used by DCUTET.
C IFAIL Integer.
C IFAIL = 0 for normal exit.
C
C ABSERR(K) <= EPSABS or
C ABSERR(K) <= ABS(RESULT(K))*EPSREL with MAXPTS or less
C function evaluations for all values of K,
C 1 <= K <= NUMFUN .
C
C IFAIL = 1 if MAXPTS was too small for DCUTET
C to obtain the required accuracy. In this case DCUTET
C returns values of RESULT with estimated absolute
C errors ABSERR.
C IFAIL = 2 if NUMFUN is less than 1.
C IFAIL = 3 if the volume of one of the initially given
C tetrahedrons is zero.
C IFAIL = 4 if MAXPTS is less than 43*NUMTET.
C IFAIL = 5 if MAXPTS is less than MINPTS.
C IFAIL = 6 if EPSABS <= 0 and EPSREL <= 0.
C IFAIL = 7 if LENVER is less than MAXSUB.
C IFAIL = 8 if NW is less than MAXSUB*(2*NUMFUN+1) +
C NUMFUN*MAX(8*6*MDIV,6*NUMTET) + 1.
C IFAIL = 9 if unlegal RESTAR.
C VER Real array of dimension (3,4,LENVER).
C On exit VER
C contains the vertices of the tetrahedrons used to produce
C the approximations to the integrals.
C WORK Real array of dimension NW.
C Used as working storage.
C WORK(NW) = NSUB, the number of subregions in the data
C structure.
C Let WRKSUB=(NW-1-NUMFUN*7*MAX(8*MDIV,NUMTET))/
C (2*NUMFUN+1).
C WORK(1),...,WORK(NUMFUN*WRKSUB) contain
C the estimated components of the integrals over the
C subregions.
C WORK(NUMFUN*WRKSUB+1),...,WORK(2*NUMFUN*WRKSUB) contain
C the estimated errors over the subregions.
C WORK(2*NUMFUN*WRKSUB+1),...,WORK(2*NUMFUN*
C WRKSUB+WRKSUB) contain the greatest errors
C in each subregion.
C WORK((2*NUMFUN+1)*WRKSUB),...,WORK(NW - 1) is used as
C temporary storage in DADTET.
C IWORK Integer array of dimension LENVER + MDIV.
C Used as working storage.
C
C SAMPLE PROGRAM
C The following program will approximate the integral of
C exp(x*x+y*y+z*z)
C over the tetrahedron (0.,0.,0.),(1.,0.,0.),(0.,1.,0.),(0.,0.,1.)
C and print out the values of the estimated integral, the estimated
C error, the number of function evaluations and IFAIL.
C PROGRAM DTEST1
C DOUBLE PRECISION VER(3,4,50),EPSABS,EPSREL,RESULT(1),ABSERR(1),
C + WORK(1000)
C INTEGER NUMFUN,NUMTET,MINPTS,MAXPTS,LENVER,NW,RESTAR,NEVAL,
C + IFAIL,IWORK(51)
C EXTERNAL F
C VER(1,1,1) = 0.D0
C VER(1,2,1) = 1.D0
C VER(1,3,1) = 0.D0
C VER(1,4,1) = 0.D0
C VER(2,1,1) = 0.D0
C VER(2,2,1) = 0.D0
C VER(2,3,1) = 1.D0
C VER(2,4,1) = 0.D0
C VER(3,1,1) = 0.D0
C VER(3,2,1) = 0.D0
C VER(3,3,1) = 0.D0
C VER(3,4,1) = 1.D0
C EPSABS = 0.D0
C EPSREL = 1.D-5
C NUMFUN = 1
C NUMTET = 1
C MINPTS = 0
C MAXPTS = 1000
C LENVER = 50
C NW = 1000
C RESTAR = 0
C CALL DCUTET(F,NUMFUN,VER,NUMTET,MINPTS,MAXPTS,EPSABS,
C + EPSREL,LENVER,NW,RESTAR,RESULT,ABSERR,NEVAL,
C + IFAIL,WORK,IWORK)
C WRITE(*,*)'RESULT=',RESULT(1)
C WRITE(*,*)'ERROR =',ABSERR(1)
C WRITE(*,*)'NEVAL =',NEVAL
C WRITE(*,*)'IFAIL =',IFAIL
C END
C SUBROUTINE F(X,NUMFUN,FUNVLS)
C INTEGER NUMFUN
C DOUBLE PRECISION X(3),FUNVLS(NUMFUN)
C FUNVLS(1) = EXP(X(1)*X(1)+X(2)*X(2)+X(3)*X(3))
C RETURN
C END
C
C Output produced on a SUN 3/50
C
C RESULT= 0.22779999698986
C ERROR = 1.9752829160298D-06
C NEVAL = 43
C IFAIL = 0
C
C***LONG DESCRIPTION
C
C The information for each tetrahedron is contained in the
C data structures VER, WORK and IWORK.
C VER contains the coordinates of the tetrahedrons.
C When passed on to DADTET, WORK is split into four
C arrays VALUES, ERRORS, GREATE and WORK2.
C VALUES contains the estimated values of the integrals.
C ERRORS contains the estimated errors.
C GREATE contains the greatest estimated error for each tetrahedron.
C The data structures for the tetrahedrons are in DADTET organized
C as a heap and the size of GREATE(I) defines the position of
C tetrahedron I in the heap. The heap is maintained by the program
C DTRTET and we use a partially ordered list of pointers, saved in
C IWORK. When passed on to DADTET, IWORK is split into two
C arrays LIST and VACANT. LIST is a partially ordered list
C such that GREATE(LIST(1)) is the maximum error estimate
C for all subtetrahedrons in our datastructure.
C VACANT is a work space needed in th updating process of the list.
C
C The subroutine DADTET is written for efficient execution on shared
C memory parallel computers. On a computer with NPROC processors we
C will in each subdivision step divide MDIV tetrahedrons, where MDIV
C is chosen such that MOD(8*MDIV,NPROC) = 0, in totally 8*MDIV new
C tetrahedrons. Each processor will then compute estimates of the
C integrals and errors over 8*MDIV/NPROC tetrahedrons in each
C subdivision step.
C The subroutine for estimating the integral and the error over
C each subregion, DRLTET, uses WORK2 as a work array.
C We must make sure that each processor writes its results to
C separate parts of the memory, and therefore the sizes of WORK and
C WORK2 are functions of MDIV.
C In order to achieve parallel processing of tetrahedrons, compiler
C directives should be placed in front of the DO 20 and the DO 200
C loops in DADTET on machines like Alliant and CRAY.
C
C***REFERENCES
C J.Berntsen, R. Cools and T.O.Espelid, An Algorithm for Adaptive
C Cubature Over a Collection of Tetrahedrons, to be published.
C
C***ROUTINES CALLED DCHTET,DADTET
C***END PROLOGUE DCUTET
C
C Parameters
C
C MDIV Integer.
C MDIV is the number of tetrahedrons that are divided in
C each subdivision step in DADTET.
C MDIV is chosen default to 1.
C For efficient execution on parallel computers
C with NPROC processors MDIV should be set equal to
C the smallest integer such that MOD(8*MDIV,NPROC) = 0.
C
INTEGER MDIV
PARAMETER (MDIV=1)
C
C Global variables.
C
EXTERNAL FUNSUB
common/ierdcu/iero
INTEGER NUMFUN,NUMTET,MINPTS,MAXPTS,LENVER,NW,RESTAR,NEVAL,IFAIL,
+ IWORK(LENVER+MDIV)
DOUBLE PRECISION VER(3,4,LENVER),EPSABS,EPSREL,RESULT(NUMFUN),
+ ABSERR(NUMFUN),WORK(NW)
C
C Local variables.
C
C MAXSUB Integer.
C The maximum allowed number of subdivisions
C for the given values of MAXPTS.
C MINSUB Integer.
C The minimum allowed number of subregions for the given
C values of MINPTS.
C WRKSUB Integer.
C The maximum allowed number of subregions as a function
C of NW, NUMFUN and MDIV. This determines the length
C of the main work arrays.
C
INTEGER MAXSUB,MINSUB,NSUB,LENW
INTEGER WRKSUB,I1,I2,I3,I4,I5
C
C***FIRST EXECUTABLE STATEMENT DCUTET
C
C Call DCHTET to compute MAXSUB and MINSUB,
C and to check the input parameters.
C
iero=0
CALL DCHTET(NUMFUN,MDIV,VER,NUMTET,MINPTS,MAXPTS,EPSABS,EPSREL,
+ LENVER,NW,RESTAR,MAXSUB,MINSUB,IFAIL)
C
C All tests on input data passed?
C
IF (IFAIL.NE.0) THEN
RETURN
END IF
C
C Split up the work space.
C
WRKSUB = (NW-1-NUMFUN*7*MAX(8*MDIV,NUMTET))/ (2*NUMFUN+1)
I1 = 1
I2 = I1 + WRKSUB*NUMFUN
I3 = I2 + WRKSUB*NUMFUN
I4 = I3 + WRKSUB
I5 = I4 + 6*MAX(8*MDIV,NUMTET)*NUMFUN
C
C On restart runs the number of subregions from the
C previous call is assigned to NSUB.
C
IF (RESTAR.EQ.1) THEN
NSUB = WORK(NW)
END IF
C
C Compute the size of the temporary work space needed in DADTET.
C
LENW = MAX(8*MDIV,NUMTET)*NUMFUN
CALL DADTET(NUMFUN,MDIV,VER,NUMTET,MINSUB,MAXSUB,FUNSUB,EPSABS,
+ EPSREL,LENVER,RESTAR,LENW,RESULT,ABSERR,NEVAL,NSUB,
+ IFAIL,WORK(I1),WORK(I2),WORK(I3),WORK(I4),WORK(I5),
+ IWORK(1),IWORK(1+LENVER))
WORK(NW) = NSUB
RETURN
C
C***END DCUTET
C
END
SUBROUTINE DCHTET(NUMFUN,MDIV,VER,NUMTET,MINPTS,MAXPTS,EPSABS,
+ EPSREL,LENVER,NW,RESTAR,MAXSUB,MINSUB,IFAIL)
C***BEGIN PROLOGUE DCHTET
C***REFER TO DCUTET
C***PURPOSE DCHTET checks the validity of the
C input parameters to DCUTET.
C***DESCRIPTION
C DCHTET computes MAXSUB, MINSUB and IFAIL as
C functions of the input parameters to DCUTET,
C and checks the validity of the input parameters to DCUTET.
C
C ON ENTRY
C
C NUMFUN Integer.
C Number of components of the integral.
C MDIV Integer.
C MDIV is the number of tetrahedrons that are divided in
C each subdivision step in DADTET.
C MDIV is chosen default to 1.
C For efficient execution on parallel computers
C with NPROC processors MDIV should be set equal to
C the smallest integer such that MOD(8*MDIV,NPROC) = 0.
C VER Real array of dimension (3,4,LENVER).
C VER(1,K,L), VER(2,K,L) and VER(3,K,L) are the x, y and z
C coordinates respectively of vertex K in tetrahedron L.
C On entry VER(*,*,L) must contain the vertices of the
C NUMTET user specified tetrahedrons for L = 1,2,...,NUMTET.
C NUMTET Integer.
C The number of tetrahedrons.
C MINPTS Integer.
C Minimum number of function evaluations.
C MAXPTS Integer.
C Maximum number of function evaluations.
C The number of function evaluations over each subregion
C is NUM.
C MAXPTS >= NUM*NUMTET and MAXPTS >= MINPTS
C
C EPSABS Real.
C Requested absolute error.
C EPSREL Real.
C Requested relative error.
C LENVER Integer.
C Defines the length of the array VER.
C
C We let
C MAXSUB denote the maximum allowed number of subregions
C for the given values of MAXPTS.
C MAXSUB = 7*(MAXPTS-NUM*NUMTET)/(8*NUM) + NUMTET
C LENVER should then be greater or equal to MAXSUB.
C
C NW Integer.
C Defines the length of the working array WORK.
C
C We let
C MAXSUB denote the maximum allowed number of subregions
C for the given values of MAXPTS.
C MAXSUB = 7*(MAXPTS-NUM*NUMTET)/(8*NUM) + NUMTET
C NW should then be greater or equal to
C MAXSUB*(2*NUMFUN+1) + 6*MAX(8*MDIV,NUMTET)*NUMFUN + 1
C
C RESTAR Integer.
C If RESTAR = 0, this is the first attempt to compute
C the integral.
C If RESTAR = 1,
C then we restart a previous attempt.
C In this case the only parameters for DCUTET that may
C be changed (with respect to the previous call of DCUTET)
C are MINPTS, MAXPTS, EPSABS, EPSREL and RESTAR.
C
C
C ON RETURN
C
C MAXSUB Integer.
C The maximum allowed number of subregions for the
C given values of MAXPTS.
C MINSUB Integer.
C The minimum allowed number of subregions for the given
C values of MINPTS.
C IFAIL Integer.
C IFAIL = 0 for normal exit.
C IFAIL = 2 if NUMFUN is less than 1.
C IFAIL = 3 if the volume of one of the initially given
C tetrahedrons is zero.
C IFAIL = 4 if MAXPTS is less than NUM*NUMTET.
C IFAIL = 5 if MAXPTS is less than MINPTS.
C IFAIL = 6 if EPSABS <= 0 and EPSREL <= 0.
C IFAIL = 7 if LENVER is less than MAXSUB.
C IFAIL = 8 if NW is less than MAXSUB*(2*NUMFUN+1) +
C NUMFUN*6*MAX(8*MDIV,NUMTET) + 1.
C IFAIL = 9 if illegal value of RESTAR.
C
C***ROUTINES CALLED-NONE
C***END PROLOGUE DCHTET
C
C Global variables.
C
INTEGER NUMFUN,MDIV,NUMTET,MINPTS,MAXPTS,NW,MAXSUB,MINSUB,RESTAR,
+ LENVER,IFAIL
DOUBLE PRECISION VER(3,4,NUMTET),EPSABS,EPSREL
C
C Local variables.
C NUM is set equal to the number of evaluation points used
C by the cubature rule over each tetrahedron.
C
INTEGER LIMIT,J,NUM
DOUBLE PRECISION VOLUME
C
C***FIRST EXECUTABLE STATEMENT DCHTET
C
IFAIL = 0
NUM = 43
C
C Compute MAXSUB and MINSUB.
C
MAXSUB = 7* (MAXPTS-NUM*NUMTET)/ (8*NUM) + NUMTET
MINSUB = 7* (MINPTS-NUM*NUMTET)/ (8*NUM) + NUMTET
IF (MOD(7* (MINPTS-NUM*NUMTET),8*NUM).GT.0) THEN
MINSUB = MINSUB + 1
END IF
MINSUB = MAX(NUMTET,MINSUB)
C
C Check on positive NUMFUN.
C
IF (NUMFUN.LT.1) THEN
IFAIL = 2
RETURN
END IF
C
C Check on legal volume of each subregion of integration.
C
DO 10 J = 1,NUMTET
VOLUME = (VER(1,2,J)-VER(1,1,J))*
+ ((VER(2,3,J)-VER(2,1,J))*(VER(3,4,J)-VER(3,1,J)) -
+ (VER(2,4,J)-VER(2,1,J))*(VER(3,3,J)-VER(3,1,J))) -
+ (VER(2,2,J)-VER(2,1,J))*
+ ((VER(1,3,J)-VER(1,1,J))*(VER(3,4,J)-VER(3,1,J)) -
+ (VER(1,4,J)-VER(1,1,J))*(VER(3,3,J)-VER(3,1,J))) +
+ (VER(3,2,J)-VER(3,1,J))*
+ ((VER(1,3,J)-VER(1,1,J))*(VER(2,4,J)-VER(2,1,J)) -
+ (VER(1,4,J)-VER(1,1,J))*(VER(2,3,J)-VER(2,1,J)))
VOLUME = VOLUME/6
IF (VOLUME.EQ.0) THEN
IFAIL = 3
RETURN
END IF
10 CONTINUE
C
C Check on MAXPTS >= NUM*NUMTET.
C
IF (MAXPTS.LT.NUM*NUMTET) THEN
IFAIL = 4
RETURN
END IF
C
C Check on MAXPTS >= MINPTS.
C
IF (MAXPTS.LT.MINPTS) THEN
IFAIL = 5
RETURN
END IF
C
C Check on legal accuracy requests.
C
IF (EPSABS.LE.0 .AND. EPSREL.LE.0) THEN
IFAIL = 6
RETURN
END IF
C
C Check on big enough LENVER.
C
IF (LENVER.LT.MAXSUB) THEN
IFAIL = 7
RETURN
END IF
C
C Check on big enough NW.
C
LIMIT = MAXSUB* (2*NUMFUN+1) + 7*MAX(8*MDIV,NUMTET)*NUMFUN + 1
IF (NW.LT.LIMIT) THEN
IFAIL = 8
RETURN
END IF
C
C Check on legal RESTAR.
C
IF (RESTAR.NE.0 .AND. RESTAR.NE.1) THEN
IFAIL = 9
END IF
RETURN
C
C***END DCHTET
C
END
SUBROUTINE DADTET(NUMFUN,MDIV,VER,NUMTET,MINSUB,MAXSUB,FUNSUB,
+ EPSABS,EPSREL,LENVER,RESTAR,LENW,RESULT,ABSERR,
+ NEVAL,NSUB,IFAIL,VALUES,ERRORS,GREATE,WORK2,
+ WORK3,LIST,VACANT)
C***BEGIN PROLOGUE DADTET
C***REFER TO DCUTET
C***DESCRIPTION Computation of integrals over regions consisting of
C a collection of tetrahedrons.
C
C DADTET repeatedly
C subdivides the tetrahedrons with greatest estimated errors
C and estimates the integrals and the errors over the new
C new sub-tetrahedrons until the error request is met
C or MAXPTS function evaluations have been used.
C
C A 43 point integration rule
C with all evaluation points inside the tetrahedron
C is applied. The rule has polynomial degree 8.
C
C ON ENTRY
C
C NUMFUN Integer.
C Number of components of the integral.
C MDIV Integer.
C MDIV is the number of tetrahedrons that are divided in
C each subdivision step in DADTET.
C MDIV is chosen default to 1.
C For efficient execution on parallel computers
C with NPROC processors MDIV should be set equal to
C the smallest integer such that MOD(8*MDIV,NPROC) = 0.
C VER Real array of dimension (3,4,LENVER).
C VER(1,K,L), VER(2,K,L) and VER(3,K,L) are the x, y and z
C coordinates respectively of vertex K in tetrahedron L.
C On entry VER(*,*,L) must contain the vertices of the
C NUMTET user specified tetrahedrons for L = 1,2,...,NUMTET.
C NUMTET Integer.
C The number of tetrahedrons.
C MINSUB Integer.
C The minimum allowed number of subregions.
C MAXSUB Integer.
C The maximum allowed number of subregions.
C FUNSUB Externally declared subroutine for computing
C all components of the integrand at the given
C evaluation point.
C It must have parameters (X,NUMFUN,FUNVLS)
C Input parameters:
C X(1) The x-coordinate of the evaluation point.
C X(2) The y-coordinate of the evaluation point.
C X(3) The z-coordinate of the evaluation point.
C NUMFUN Integer that defines the number of
C components of I.
C Output parameter:
C FUNVLS Real array of dimension NUMFUN
C that defines NUMFUN components of the integrand.
C
C EPSABS Real.
C Requested absolute error.
C EPSREL Real.
C Requested relative error.
C
C LENVER Integer.
C Defines the length of the array VER.
C
C We let
C MAXSUB denote the maximum allowed number of subregions
C for the given values of MAXPTS.
C MAXSUB = 7*(MAXPTS-43*NUMTET)/(8*43) + NUMTET
C LENVER should then be greater or equal to MAXSUB.
C
C RESTAR Integer.
C If RESTAR = 0, this is the first attempt to compute
C the integral.
C If RESTAR = 1,
C then we restart a previous attempt.
C In this case the only parameters for DCUTET that may
C be changed (with respect to the previous call of DCUTET)
C are MINPTS, MAXPTS, EPSABS, EPSREL and RESTAR.
C LENW Integer.
C Length of the workspace WORK2.
C
C ON RETURN
C
C RESULT Real array of dimension NUMFUN.
C Approximations to all components of the integral.
C ABSERR Real array of dimension NUMFUN.
C Estimates of absolute errors.
C NEVAL Integer.
C Number of function evaluations used by DCUTET.
C NSUB Integer.
C The number of tetrahedrons in the data structure.
C IFAIL Integer.
C IFAIL = 0 for normal exit.
C
C ABSERR(K) <= EPSABS or
C ABSERR(K) <= ABS(RESULT(K))*EPSREL with MAXPTS or less
C function evaluations for all values of K,
C 1 <= K <= NUMFUN .
C
C IFAIL = 1 if MAXSUB was too small for DADTET
C to obtain the required accuracy. In this case DADTET
C returns values of RESULT with estimated absolute
C errors ABSERR.
C VALUES Real array of dimension (NUMFUN,MAXSUB).
C The estimated components of the integrals over the
C subregions.
C ERRORS Real array of dimension (NUMFUN,MAXSUB).
C The estimated errors over the subregions.
C GREATE Real array of dimension MAXSUB.
C The greatest errors in each subregion.
C WORK2 Real array of dimension 6*LENW.
C Work array used in DRLTET.
C WORK3 Real array of dimension LENW.
C Work array used in DRLTET.
C LIST Integer array used in DTRTET of dimension LENVER.
C Is a partially sorted list, where LIST(1) is the top
C element in a heap of subregions.
C VACANT Integer array of dimension MDIV
C Used as intermediate storage of pointers.
C***ROUTINES CALLED DTRTET,DRLTET
C***END PROLOGUE DADTET
C
C Global variables.
C
EXTERNAL FUNSUB
common/ierdcu/iero
INTEGER NUMFUN,MDIV,NUMTET,MINSUB,MAXSUB,LENW,RESTAR,LENVER,NEVAL,
+ NSUB,IFAIL,LIST(LENVER),VACANT(MDIV)
DOUBLE PRECISION VER(3,4,LENVER),EPSABS,EPSREL,RESULT(NUMFUN),
+ ABSERR(NUMFUN),VALUES(NUMFUN,MAXSUB),
+ ERRORS(NUMFUN,MAXSUB),GREATE(MAXSUB),WORK3(LENW),
+ WORK2(6*LENW)
C
C Local variables.
C
C SBRGNS is the number of stored subregions.
C NDIV The number of subregions to be divided in each main step.
C POINTR Pointer to the position in the data structure where
C the new subregions are to be stored.
C G is the homogeneous coordinates of the integration rule.
C W is the weights of the integration rule and the null rules.
C TOP is a pointer to the top element in the heap of subregions.
C COUNT is the number of times the termination criterium is
C satisfied.
INTEGER I,J,K,L,TOP,SIZE
INTEGER SBRGNS,I1,I2,I3,I4,I5,I6,I7,I8
INTEGER L1,K1
INTEGER COUNT,GROUP,LEFT,NDIV,POINTR,INDEX,NUM
DOUBLE PRECISION VEROLD(3,4),VERNEW(3,6),SUMVAL(2),SUMERR(2)
C
C***FIRST EXECUTABLE STATEMENT DADTET
C
COUNT = 0
NUM = 43
IF (RESTAR.EQ.1) THEN
SBRGNS = NSUB
GO TO 110
END IF
C
C Initiate RESULT and ABSERR.
C
DO 10 J = 1,NUMFUN
RESULT(J) = 0
ABSERR(J) = 0
10 CONTINUE
C
C Apply DRLTET over the NUMTET tetrahedrons.
C This loop may be run in parallel.
C
DO 20 I = 1,NUMTET
L1 = 1 + (I-1)*6*NUMFUN
K1 = 1 + (I-1)*NUMFUN
CALL DRLTET(VER(1,1,I),NUMFUN,FUNSUB,WORK2(L1),VALUES(1,I),
+ ERRORS(1,I),GREATE(I),WORK3(K1))
if(iero.ne.0) return
20 CONTINUE
NEVAL = NUM*NUMTET
SBRGNS = NUMTET
C
C Add the computed values to RESULT and ABSERR.
C
DO 40 I = 1,NUMTET
DO 30 J = 1,NUMFUN
RESULT(J) = RESULT(J) + VALUES(J,I)
ABSERR(J) = ABSERR(J) + ERRORS(J,I)
30 CONTINUE
40 CONTINUE
C
C Store results in heap.
C
DO 50 I = 1,NUMTET
INDEX = I
CALL DTRTET(2,INDEX,GREATE,LIST,(INDEX))
50 CONTINUE
C
C We check for termination.
C
IF (SBRGNS.LT.MINSUB) THEN
GO TO 110
END IF
DO 60 J = 1,NUMFUN
IF (ABSERR(J).GT.EPSREL*ABS(RESULT(J)) .AND.
+ ABSERR(J).GT.EPSABS) THEN
GO TO 110
END IF
60 CONTINUE
IFAIL = 0
COUNT = COUNT + 1
GO TO 499
C
C***End initiation.
C
C***Begin loop while the error is too great,
C and SBRGNS+7 is less than MAXSUB.
C
110 IF (SBRGNS+7.LE.MAXSUB) THEN
C
C If we are allowed to divide further,
C prepare to apply basic rule over the tetrahedrons produced
C by dividing the
C NDIV sub-tetrahedrons with greatest errors.
C If MAXSUB and SBRGNS are great enough, NDIV = MDIV.
C
NDIV = MAXSUB - SBRGNS
NDIV = MIN(NDIV,MDIV,SBRGNS)
C
C Divide each of the NDIV sub-tetrahedrons in eight new
C sub-tetrahedrons, and compute integral and error over each.
C When we pick a tetrahedron to divide in eight one of the
C new sub-tetrahedron is stored in the original tetrahedrons'
C position in the datastructure. Thus we get 7*NDIV new
C elements in the datastructure after the subdivision. The size
C of the datastructure before the sub-division
C is stored in the variable SIZE, while SBRGNS is the size of
C heap at any time.
SIZE = SBRGNS
DO 150 I = 1,NDIV
POINTR = SIZE + 7* (NDIV+1-I)
C
C Adjust RESULT and ABSERR. TOP is a pointer to the top of the heap.
C
TOP = LIST(1)
VACANT(I) = TOP
DO 115 J = 1,NUMFUN
RESULT(J) = RESULT(J) - VALUES(J,TOP)
ABSERR(J) = ABSERR(J) - ERRORS(J,TOP)
115 CONTINUE
C
C Save the vertices.
C
DO 130 L = 1,3
DO 135 K = 1,4
VEROLD(L,K) = VER(L,K,TOP)
135 CONTINUE
130 CONTINUE
C
C Adjust the heap.
C
CALL DTRTET(1,SBRGNS,GREATE,LIST,K)
C
C Compute the eight new tetrahedrons. Store 7 in consecutive
C positions and 1 in the vacant position.
C
I1 = TOP
I2 = POINTR - 6
I3 = POINTR - 5
I4 = POINTR - 4
I5 = POINTR - 3
I6 = POINTR - 2
I7 = POINTR - 1
I8 = POINTR
C
C Compute the 6 division points.
C
DO 140 L = 1,3
VERNEW(L,1) = (VEROLD(L,1)+VEROLD(L,2))/2
VERNEW(L,2) = (VEROLD(L,2)+VEROLD(L,3))/2
VERNEW(L,3) = (VEROLD(L,1)+VEROLD(L,3))/2
VERNEW(L,4) = (VEROLD(L,1)+VEROLD(L,4))/2
VERNEW(L,5) = (VEROLD(L,2)+VEROLD(L,4))/2
VERNEW(L,6) = (VEROLD(L,3)+VEROLD(L,4))/2
140 CONTINUE
C
DO 145 L = 1,3
VER(L,1,I1) = VEROLD(L,1)
VER(L,2,I1) = VERNEW(L,1)
VER(L,3,I1) = VERNEW(L,3)
VER(L,4,I1) = VERNEW(L,4)
VER(L,1,I2) = VEROLD(L,2)
VER(L,2,I2) = VERNEW(L,1)
VER(L,3,I2) = VERNEW(L,2)
VER(L,4,I2) = VERNEW(L,5)
VER(L,1,I3) = VEROLD(L,3)
VER(L,2,I3) = VERNEW(L,2)
VER(L,3,I3) = VERNEW(L,3)
VER(L,4,I3) = VERNEW(L,6)
VER(L,1,I4) = VEROLD(L,4)
VER(L,2,I4) = VERNEW(L,4)
VER(L,3,I4) = VERNEW(L,5)
VER(L,4,I4) = VERNEW(L,6)
VER(L,1,I5) = VERNEW(L,1)
VER(L,2,I5) = VERNEW(L,3)
VER(L,3,I5) = VERNEW(L,4)
VER(L,4,I5) = VERNEW(L,5)
VER(L,1,I6) = VERNEW(L,1)
VER(L,2,I6) = VERNEW(L,2)
VER(L,3,I6) = VERNEW(L,3)
VER(L,4,I6) = VERNEW(L,5)
VER(L,1,I7) = VERNEW(L,2)
VER(L,2,I7) = VERNEW(L,3)
VER(L,3,I7) = VERNEW(L,5)
VER(L,4,I7) = VERNEW(L,6)
VER(L,1,I8) = VERNEW(L,3)
VER(L,2,I8) = VERNEW(L,4)
VER(L,3,I8) = VERNEW(L,5)
VER(L,4,I8) = VERNEW(L,6)
145 CONTINUE
150 CONTINUE
C
C Apply basic rule.
C This loop may be run in parallel.
C
DO 200 I = 1,8*NDIV
IF (I.LE.NDIV) THEN
INDEX = VACANT(I)
ELSE
INDEX = SBRGNS + I
END IF
L1 = 1 + (I-1)*6*NUMFUN
K1 = 1 + (I-1)*NUMFUN
CALL DRLTET(VER(1,1,INDEX),NUMFUN,FUNSUB,WORK2(L1),
+ VALUES(1,INDEX),ERRORS(1,INDEX),GREATE(INDEX),
+ WORK3(K1))
if(iero.ne.0) return
200 CONTINUE
NEVAL = NEVAL + 8*NDIV*NUM
C
C Add new contributions to RESULT and ABSERR.
C
DO 220 I = 1,8*NDIV
IF (I.LE.NDIV) THEN
INDEX = VACANT(I)
ELSE
INDEX = SBRGNS + I
END IF
DO 210 J = 1,NUMFUN
RESULT(J) = RESULT(J) + VALUES(J,INDEX)
ABSERR(J) = ABSERR(J) + ERRORS(J,INDEX)
210 CONTINUE
220 CONTINUE
C
C Store results in heap.
C
DO 250 I = 1,8*NDIV
IF (I.LE.NDIV) THEN
INDEX = VACANT(I)
ELSE
INDEX = SBRGNS + I
END IF
J = SBRGNS + I
CALL DTRTET(2,J,GREATE,LIST,INDEX)
250 CONTINUE
SBRGNS = SBRGNS + 8*NDIV
C
C Check for termination.
C
IF (SBRGNS.LT.MINSUB) THEN
GO TO 110
END IF
DO 255 J = 1,NUMFUN
IF (ABSERR(J).GT.EPSREL*ABS(RESULT(J)) .AND.
+ ABSERR(J).GT.EPSABS) THEN
GO TO 110
END IF
255 CONTINUE
IFAIL = 0
COUNT = COUNT + 1
C
C Else we did not succeed with the
C given value of MAXSUB.
C
ELSE
IFAIL = 1
END IF
C
C Compute more accurate values of RESULT and ABSERR. This is done
C to reduce the effect of roundoff on final results. Large
C intermediate sums in the computation may course large, unnecessary
C roundoff errors. Thus recomputing the sums of errors and estimates
C and in addition grouping the sums in three groups should remove this
C problem.
C
499 CONTINUE
DO 550 J = 1,NUMFUN
RESULT(J) = 0
ABSERR(J) = 0
GROUP = SBRGNS** (1.d0/3.d0)
IF (GROUP**3.NE.SBRGNS) THEN
GROUP = GROUP + 1
END IF
LEFT = SBRGNS
DO 520 I2 = 0,SBRGNS - 1,GROUP**2
SUMVAL(2) = 0
SUMERR(2) = 0
DO 510 I1 = 0,MIN(LEFT,GROUP**2) - 1,GROUP
SUMVAL(1) = 0
SUMERR(1) = 0
DO 500 I = 1 + I1 + I2,MIN(LEFT,GROUP) + I1 + I2
SUMVAL(1) = SUMVAL(1) + VALUES(J,I)
SUMERR(1) = SUMERR(1) + ERRORS(J,I)
500 CONTINUE
LEFT = LEFT - MIN(LEFT,GROUP)
SUMVAL(2) = SUMVAL(2) + SUMVAL(1)
SUMERR(2) = SUMERR(2) + SUMERR(1)
510 CONTINUE
RESULT(J) = RESULT(J) + SUMVAL(2)
ABSERR(J) = ABSERR(J) + SUMERR(2)
520 CONTINUE
550 CONTINUE
C
C Check again for termination
C
IF (IFAIL.EQ.0) THEN
IF (COUNT.LE.1) THEN
DO 560 J = 1,NUMFUN
IF (ABSERR(J).GT.EPSREL*ABS(RESULT(J)) .AND.
+ ABSERR(J).GT.EPSABS) THEN
GO TO 110
END IF
560 CONTINUE
END IF
END IF
C
NSUB = SBRGNS
RETURN
C
C***END DADTET
C
END
SUBROUTINE DTRTET(DVFLAG,SBRGNS,GREATE,LIST,NEW)
C***BEGIN PROLOGUE DTRTET
C***REFER TO DCUTET
C***PURPOSE DTRTET maintains a heap of subregions.
C***DESCRIPTION DTRTET maintains a heap of subregions.
C The subregions are stored in a partially sorted
C binary tree, ordered according to the size of the
C greatest error estimates of each subregion(GREATE).
C The subregion with greatest error estimate is in the
C first position of the heap.
C
C PARAMETERS
C
C DVFLAG Integer.
C If DVFLAG = 1, we remove the subregion with
C greatest error from the heap.
C If DVFLAG = 2, we insert a new subregion in the heap.
C SBRGNS Integer.
C Number of subregions in the heap.
C GREATE Real array of dimension SBRGNS.
C Used to store the greatest estimated errors in
C all subregions.
C LIST Integer array of dimension SBRGNS.
C Used as a partially ordered list of pointers to the
C different subregions. This list is a heap where the
C element on top of the list is the subregion with the
C greatest error estimate.
C NEW Integer.
C Index to the new region to be inserted in the heap.
C***ROUTINES CALLED-NONE
C***END PROLOGUE DTRTET
C
C Global variables.
C
INTEGER DVFLAG,NEW,SBRGNS,LIST(*)
DOUBLE PRECISION GREATE(*)
C
C Local variables.
C
C GREAT is used as intermediate storage for the greatest error of a
C subregion.
C SUBRGN Position of child/parent subregion in the heap.
C SUBTMP Position of parent/child subregion in the heap.
INTEGER SUBRGN,SUBTMP
DOUBLE PRECISION GREAT
C
C***FIRST EXECUTABLE STATEMENT DTRTET
C
C If DVFLAG = 1, we will reduce the partial ordered list by the
C element with greatest estimated error. Thus the element in
C in the heap with index LIST(1) is vacant and can be used later.
C Reducing the heap by one element implies that the last element
C should be re-positioned.
C
IF (DVFLAG.EQ.1) THEN
GREAT = GREATE(LIST(SBRGNS))
SBRGNS = SBRGNS - 1
SUBRGN = 1
20 SUBTMP = 2*SUBRGN
IF (SUBTMP.LE.SBRGNS) THEN
IF (SUBTMP.NE.SBRGNS) THEN
C
C Find max. of left and right child.
C
IF (GREATE(LIST(SUBTMP)).LT.
+ GREATE(LIST(SUBTMP+1))) THEN
SUBTMP = SUBTMP + 1
END IF
END IF
C
C Compare max.child with parent.
C If parent is max., then done.
C
IF (GREAT.LT.GREATE(LIST(SUBTMP))) THEN
C
C Move the pointer at position subtmp up the heap.
C
LIST(SUBRGN) = LIST(SUBTMP)
SUBRGN = SUBTMP
GO TO 20
END IF
END IF
C
C Update the pointer.
C
IF (SBRGNS.GT.0) THEN
LIST(SUBRGN) = LIST(SBRGNS+1)
END IF
ELSE IF (DVFLAG.EQ.2) THEN
C
C If DVFLAG = 2, find the position for the NEW region in the heap.
C
GREAT = GREATE(NEW)
SUBRGN = SBRGNS
40 SUBTMP = SUBRGN/2
IF (SUBTMP.GE.1) THEN
C
C Compare max.child with parent.
C If parent is max, then done.
C
IF (GREAT.GT.GREATE(LIST(SUBTMP))) THEN
C
C Move the pointer at position subtmp down the heap.
C
LIST(SUBRGN) = LIST(SUBTMP)
SUBRGN = SUBTMP
GO TO 40
END IF
END IF
C
C Set the pointer to the new region in the heap.
C
LIST(SUBRGN) = NEW
END IF
C
C***END DTRTET
C
RETURN
END
SUBROUTINE DRLTET(VER,NUMFUN,FUNSUB,NULL,BASVAL,RGNERR,GREATE,
+ SUMVAL)
C***BEGIN PROLOGUE DRLTET
C***REFER TO DCUTET
C***PURPOSE To compute basic integration rule values and
C corresponding error estimates.
C***DESCRIPTION DRLTET computes basic integration rule values
C for a vector of integrands over a tetrahedron.
C DRLTET also computes estimates for the errors by
C using several null rule approximations.
C ON ENTRY
C
C VER Real array of dimension (3,4).
C The coordinates of the vertices of the tetrahedron.
C vertex i -> ( ver(1,i),ver(2,i),ver(3,i) )
C NUMFUN Integer.
C Number of components of the vector integrand.
C FUNSUB Externally declared subroutine for computing
C all components of the integrand at the given
C evaluation point.
C It must have parameters (X,NUMFUN,FUNVLS)
C Input parameters:
C X(1) The x-coordinate of the evaluation point.
C X(2) The y-coordinate of the evaluation point.
C X(3) The z-coordinate of the evaluation point.
C NUMFUN Integer that defines the number of
C components of the vector integrand.
C Output parameter:
C FUNVLS Real array of dimension NUMFUN
C that defines NUMFUN components of the integrand.
C
C NULL Real array of dimension (NUMFUN,6).
C A work array.
C SUMVAL Real array of dimension (NUMFUN).
C A work array
C
C ON RETURN
C
C BASVAL Real array of dimension NUMFUN.
C The values for the basic rule for each component
C of the integrand.
C RGNERR Real array of dimension NUMFUN.
C The error estimates for each component of the integrand.
C GREATE Real.
C The greatest error component of the integrand.
C
C***REFERENCES Beckers M., A. Haegemans,
C The construction of cubature formula for the tetrahedron
C Report TW128, K.U. Leuven (1990).
C***ROUTINES CALLED
C DLAMCH,DORTET,FUNSUB
C***END PROLOGUE DRLTET
C
C Parameters
C
C ORBITS Integer
C The number of orbits of the cubature formula and null rules
C CRIVAL Real
C The decision to choose the optimistic part of the error
C estimator is based on CRIVAL
C FACOPT Real
C FACOPT is the safety coefficient used in the optimistic part
C of the error estimator.
C FACMED Real
C FACMED is the safety coefficient used in the non-optimistic
C part of the error estimator. FACMED is related to CRIVAL
C and FACOPT.
C
INTEGER ORBITS
DOUBLE PRECISION CRIVAL,FACOPT,FACMED
PARAMETER (ORBITS=7)
PARAMETER (CRIVAL=0.5,FACMED=5,FACOPT=FACMED/CRIVAL)
C
C Global variables.
C
INTEGER NUMFUN
DOUBLE PRECISION VER(3,4),BASVAL(NUMFUN),RGNERR(NUMFUN),GREATE,
+ SUMVAL(NUMFUN),NULL(NUMFUN,6)
EXTERNAL FUNSUB
common/ierdcu/iero
C
C Local variables.
C
C K Integer array of dimension (0:3) that contains the structure
C parameters. K(I) = number of orbits of type I.
C TYPE1 Real array of dimension (K(1)).
C Contains the first homogeneous coordinate of the generators
C of type 1
C TYPE2 Real array of dimension (K(2)).
C Contains the first homogeneous coordinate of the generators
C of type 2
C TYPE3 Real array of dimension (2,K(2)).
C Contains the first two homogeneous coordinates of
C the generators of type 3.
C WEIGHT Real array of dimension (9,ORBITS).
C The weights of the cubature formula and the null rules.
C WEIGHT(1,1) ,..., WEIGHT(1,ORBITS) are the weights of the
C cubature formula
C WEIGHT(I,1) ,..., WEIGHT(I,ORBITS) for I > 1, are the weights
C of the null rules
C
C
INTEGER TYPE,NR,K(0:3),I,J,P
DOUBLE PRECISION Z(3),TYPE1(3),TYPE2(1),TYPE3(2,2),NOISE,DLAMCH,
+ WEIGHT(7,ORBITS),VOLUME,DEG4,DEG3,DEG1,R2,R1,R,
+ TRES
C
C Cubature formula of degree 8 with 43 points
C
C Structure parameters
C
DATA (K(I),I=0,3)/1,3,1,2/
C
C Information for the generators
C
DATA (TYPE1(I),I=1,3)/0.379510205167980387748057300876D+00,
+ 0.753689235068359830728182577696D+00,
+ 0.982654148484406008240470085259D+00/
DATA (TYPE2(I),I=1,1)/0.449467259981105775574375471447D+00/
DATA ((TYPE3(I,J),I=1,2),J=1,2)/
+ 0.506227344977843677082264893876D+00,
+ 0.356395827885340437169173969841D-01,
+ 0.736298458958971696943019005441D+00,
+ 0.190486041934633455699433285302D+00/
C
C Weights of the cubature formula
C
DATA (WEIGHT(1,I),I=1,ORBITS)/-
+ 0.123001131951839495043519102752D+00,
+ 0.855018349372014074906384482699D-01,
+ 0.118021998788034059253768205083D-01,
+ 0.101900465455732427902646736855D-02,
+ 0.274781029468036908044610867719D-01,
+ 0.342269148520915110408153517904D-01,
+ 0.128431148469725555789001180031D-01/
C
C Weights of the null rule of degree 5
C
DATA (WEIGHT(2,I),I=1,ORBITS)/0.211921237628032658308230999090D+00
+ ,-0.660207516445726284649283745987D-01,
+ 0.225058824086711710443385047042D-01,
+ -0.375962972067425589765730699401D-03,
+ 0.710066020561055159657284834784D-02,
+ 0.156515256061747694921427149028D-02,
+ -0.814530839643584660306807872526D-02/
C
C Weights of null rule of degree 4
C
DATA (WEIGHT(3,I),I=1,ORBITS)/-
+ 0.508105488137100551376844924797D-01,
+ 0.104596681151665328209751420525D-01,
+ 0.927471438532788763594989973184D-01,
+ 0.210489990008917994323967321174D-02,
+ 0.379184172251962722213408547663D-01,
+ -0.111747242913563605790923001557D-01,
+ -0.386541758762774673113423570465D-01/
C
C Weights of first null rule of degree 3
C
DATA (WEIGHT(4,I),I=1,ORBITS)/-
+ 0.775992773232808462404390159802D-01,
+ -0.527453289659022924847298408064D-01,
+ 0.145876238555932704488677626554D-01,
+ 0.739374873393616192857532718429D-02,
+ -0.374618791364332892611678523428D-01,
+ 0.538502846550653076078817013885D-01,
+ -0.183980865177843057548322735665D-01/
C
C Weights of second null rule of degree 3
C
DATA (WEIGHT(5,I),I=1,ORBITS)/0.181767621501470154602720474731D-01
+ ,0.179938831310058580533178529022D-01,
+ 0.713210362750414891598257378898D-01,
+ -0.443935688958258805893448212636D-01,
+ -0.657639036547720234169662790056D-01,
+ -0.101551807522541414699808460583D-01,
+ 0.265486188970540796821750584204D-01/
C
C Weights of null rule of degree 2
C
DATA (WEIGHT(6,I),I=1,ORBITS)/-
+ 0.867629853722843888927184699428D-01,
+ -0.715881271235661902772072127812D-01,
+ 0.886720767790426261677273459523D-02,
+ -0.577885573028655167063092577589D-01,
+ 0.430310167581202031805055255554D-01,
+ -0.606467834856775537069463817445D-02,
+ 0.319492443333738343104163265406D-01/
C
C Weights of null rule of degree 1
C
DATA (WEIGHT(7,I),I=1,ORBITS)/0.510374015624925451319499382594D-01
+ ,0.463998830432033721597269299429D-01,
+ -0.191086148397852799983451475821D-01,
+ -0.973768821003670776204287367278D-01,
+ 0.180352562073914141268335496511D-01,
+ 0.277129527093489643801598303110D-01,
+ -0.176218263109360550515567818653D-01/
C
C The number of points used by the cubature formula is
C NUM = K(0) + 4*K(1) + 6*K(2) + 12*K(3) = 43
C
C***FIRST EXECUTABLE STATEMENT DRLTRI
TRES = 50*DLAMCH('p')
C
C Compute the volume of the tetrahedron
C
VOLUME = (VER(1,2)-VER(1,1))* ((VER(2,3)-VER(2,1))*
+ (VER(3,4)-VER(3,1))- (VER(2,4)-VER(2,1))*
+ (VER(3,3)-VER(3,1))) - (VER(2,2)-VER(2,1))*
+ ((VER(1,3)-VER(1,1))* (VER(3,4)-VER(3,1))-
+ (VER(1,4)-VER(1,1))* (VER(3,3)-VER(3,1))) +
+ (VER(3,2)-VER(3,1))* ((VER(1,3)-VER(1,1))*
+ (VER(2,4)-VER(2,1))- (VER(1,4)-VER(1,1))*
+ (VER(2,3)-VER(2,1)))
VOLUME = ABS(VOLUME)/6
C
C Initialise BASVAL and NULL
C
DO 10 J = 1,NUMFUN
BASVAL(J) = 0.d0
DO 20 I = 1,6
NULL(J,I) = 0.d0
20 CONTINUE
10 CONTINUE
P = 1
C
C Compute contributions from orbits with 1, 4, 6 and 12 points
C
DO 4 TYPE = 0,3
DO 3 NR = 1,K(TYPE)
IF (TYPE.EQ.1) THEN
C Generator ( z(1) , z(2), z(2) ; z(2) )
Z(1) = TYPE1(NR)
Z(2) = (1-Z(1))/3
ELSE IF (TYPE.EQ.2) THEN
C Generator ( z(1) , z(1), z(2) ; z(2) )
Z(1) = TYPE2(NR)
Z(2) = (1-2*Z(1))/2
ELSE
C Generator ( z(1) , z(2), z(3) ; z(3) )
Z(1) = TYPE3(1,NR)
Z(2) = TYPE3(2,NR)
Z(3) = (1-Z(1)-Z(2))/2
END IF
C RGNERR is work array for DORTHE
CALL DORTET(TYPE,Z,VER,NUMFUN,FUNSUB,SUMVAL,RGNERR)
if(iero.ne.0) return
DO 2 J = 1,NUMFUN
BASVAL(J) = BASVAL(J) + WEIGHT(1,P)*SUMVAL(J)
DO 1 I = 1,6
NULL(J,I) = NULL(J,I) + WEIGHT(I+1,P)*SUMVAL(J)
1 CONTINUE
2 CONTINUE
P = P + 1
3 CONTINUE
4 CONTINUE
C
C Compute error estimates
C
GREATE = 0
DO 30 J = 1,NUMFUN
NOISE = ABS(BASVAL(J))*TRES
DEG4 = SQRT(NULL(J,1)**2+NULL(J,2)**2)
DEG3 = SQRT(NULL(J,3)**2+NULL(J,4)**2)
IF (DEG4.LE.NOISE) THEN
RGNERR(J) = NOISE
ELSE
DEG1 = SQRT(NULL(J,5)**2+NULL(J,6)**2)
IF (DEG3.NE.0) THEN
R1 = (DEG4/DEG3)**2
ELSE
R1 = 1
END IF
IF (DEG1.NE.0) THEN
R2 = DEG3/DEG1
ELSE
R2 = 1
END IF
R = MAX(R1,R2)
IF (R.GE.CRIVAL) THEN
RGNERR(J) = FACMED*R*DEG4
ELSE
RGNERR(J) = FACOPT* (R**2)*DEG4
END IF
RGNERR(J) = MAX(NOISE,RGNERR(J))
END IF
RGNERR(J) = VOLUME*RGNERR(J)
BASVAL(J) = VOLUME*BASVAL(J)
GREATE = MAX(GREATE,RGNERR(J))
30 CONTINUE
C
C***END DRLTET
C
RETURN
END
SUBROUTINE DORTET(TYPE,GENER,VER,NUMFUN,FUNSUB,SUMVAL,WORK)
C***BEGIN PROLOGUE DORTET
C***PURPOSE To compute the sum of function values over all points
C of an orbit.
C***DESCRIPTION
C ON ENTRY
C
C TYPE Integer
C The type of the orbit.
C GENER Integer array of dimension (3).
C The generator for the orbit in homogeneous coordinates.
C VER Real array of dimension (3,4).
C The coordinates of the vertices of the tetrahedron.
C vertex i -> ( ver(1,i),ver(2,i),ver(3,i) )
C NUMFUN Integer.
C Number of components of the vector integrand.
C FUNSUB Externally declared subroutine for computing
C all components of the integrand at the given
C evaluation point.
C It must have parameters (X,NUMFUN,FUNVLS)
C Input parameters:
C X(1) The x-coordinate of the evaluation point.
C X(2) The y-coordinate of the evaluation point.
C X(3) The z-coordinate of the evaluation point.
C NUMFUN Integer that defines the number of
C components of the vector integrand.
C Output parameter:
C FUNVLS Real array of dimension NUMFUN
C that defines NUMFUN components of the integrand.
C WORK Real array of dimension (NUMFUN).
C A work array
C
C ON RETURN
C
C SUMVAL Real array of dimension (NUMFUN).
C The sum of function values over all points
C of the given orbit.
C
C***END PROLOGUE DORTET
C
C Global variables
C
INTEGER NUMFUN,TYPE
DOUBLE PRECISION GENER(3),SUMVAL(NUMFUN),VER(3,4),WORK(NUMFUN)
EXTERNAL FUNSUB
common/ierdcu/iero
C
C Local variables
C
INTEGER I,J,NUMBER
DOUBLE PRECISION X(3,12),Z1,Z2,Z3
C
C The array 'gener' contains the necessary information
C for the generator
C
C***FIRST EXECUTABLE STATEMENT DORTET
GO TO (100,110,120,130),TYPE + 1
C
C Generator with homogeneous coordinates (1/4,1/4,1/4;1/4)
C
100 NUMBER = 1
X(1,1) = (VER(1,1)+VER(1,2)+VER(1,3)+VER(1,4))/4
X(2,1) = (VER(2,1)+VER(2,2)+VER(2,3)+VER(2,4))/4
X(3,1) = (VER(3,1)+VER(3,2)+VER(3,3)+VER(3,4))/4
GO TO 200
C
C Generator with homogeneous coordinates (z1,z2,z2;z2)
C
110 NUMBER = 4
Z1 = GENER(1)
Z2 = GENER(2)
DO 115 J = 1,3
X(J,1) = Z1*VER(J,1) + Z2* (VER(J,2)+VER(J,3)+VER(J,4))
X(J,2) = Z1*VER(J,2) + Z2* (VER(J,1)+VER(J,3)+VER(J,4))
X(J,3) = Z1*VER(J,3) + Z2* (VER(J,2)+VER(J,1)+VER(J,4))
X(J,4) = Z1*VER(J,4) + Z2* (VER(J,2)+VER(J,3)+VER(J,1))
115 CONTINUE
GO TO 200
C
C Generator with homogeneous coordinates (z1,z1,z2;z2)
C
120 NUMBER = 6
Z1 = GENER(1)
Z2 = GENER(2)
DO 125 J = 1,3
X(J,1) = Z1* (VER(J,1)+VER(J,2)) + Z2* (VER(J,3)+VER(J,4))
X(J,2) = Z1* (VER(J,1)+VER(J,3)) + Z2* (VER(J,2)+VER(J,4))
X(J,3) = Z1* (VER(J,1)+VER(J,4)) + Z2* (VER(J,3)+VER(J,2))
X(J,4) = Z1* (VER(J,2)+VER(J,3)) + Z2* (VER(J,1)+VER(J,4))
X(J,5) = Z1* (VER(J,2)+VER(J,4)) + Z2* (VER(J,1)+VER(J,3))
X(J,6) = Z1* (VER(J,3)+VER(J,4)) + Z2* (VER(J,1)+VER(J,2))
125 CONTINUE
GO TO 200
C
C Generator with homogeneous coordinates (z1,z2,z3;z3)
C
130 NUMBER = 12
Z1 = GENER(1)
Z2 = GENER(2)
Z3 = GENER(3)
DO 135 J = 1,3
X(J,1) = Z1*VER(J,1) + Z2*VER(J,2) + Z3* (VER(J,3)+VER(J,4))
X(J,2) = Z1*VER(J,1) + Z2*VER(J,3) + Z3* (VER(J,2)+VER(J,4))
X(J,3) = Z1*VER(J,1) + Z2*VER(J,4) + Z3* (VER(J,2)+VER(J,3))
X(J,4) = Z1*VER(J,2) + Z2*VER(J,1) + Z3* (VER(J,3)+VER(J,4))
X(J,5) = Z1*VER(J,2) + Z2*VER(J,3) + Z3* (VER(J,1)+VER(J,4))
X(J,6) = Z1*VER(J,2) + Z2*VER(J,4) + Z3* (VER(J,1)+VER(J,3))
X(J,7) = Z1*VER(J,3) + Z2*VER(J,1) + Z3* (VER(J,2)+VER(J,4))
X(J,8) = Z1*VER(J,3) + Z2*VER(J,2) + Z3* (VER(J,1)+VER(J,4))
X(J,9) = Z1*VER(J,3) + Z2*VER(J,4) + Z3* (VER(J,1)+VER(J,2))
X(J,10) = Z1*VER(J,4) + Z2*VER(J,1) + Z3* (VER(J,2)+VER(J,3))
X(J,11) = Z1*VER(J,4) + Z2*VER(J,2) + Z3* (VER(J,1)+VER(J,3))
X(J,12) = Z1*VER(J,4) + Z2*VER(J,3) + Z3* (VER(J,1)+VER(J,2))
135 CONTINUE
200 CONTINUE
CALL FUNSUB(X(1,1),NUMFUN,SUMVAL)
if(iero.ne.0) return
DO 220 J = 2,NUMBER
CALL FUNSUB(X(1,J),NUMFUN,WORK)
if(iero.ne.0) return
DO 210 I = 1,NUMFUN
SUMVAL(I) = SUMVAL(I) + WORK(I)
210 CONTINUE
220 CONTINUE
C
C***END DORTET
C
RETURN
END
|